首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.

Objectives

To enhance succinic acid production in Corynebacterium glutamicum by increasing the supply of NADH and the rate of glucose consumption by decreasing H+-ATPase activity.

Results

A mutant of C. glutamicum NC-3-1 with decreased H+-ATPase activity was constructed. This increased the rate of glycolysis and the supply of NADH. Fermentation of C. glutamicum NC-3-1 gave 39 % higher succinic acid production (113 and 81 g/l), a 29 % higher succinic acid yield (0.94 and 0.73 g succinic acid/g glucose) and decreased by-products formation compared to that of C. glutamicum NC-3 in 5 l bioreactor.

Conclusion

The point mutation in C. glutamicum NC-3-1 increased the rate of glycolysis and resulted in higher succinic acid production, higher succinic acid yield and significantly decreased formation of by-products.
  相似文献   

2.

Objective

To construct a strain of Corynebacterium glutamicum capable of efficiently producing 5-aminolevulinic acid (5-ALA) via the C4 pathway by modification of serine and glycine pathway using glucose as sole carbon source.

Results

The recombinant C. glutamicum strain AP2 harboring a codon-optimized hemA gene from Rhodobacter sphaeroides was used as host strain for 5-ALA production. A plasmid harboring the serine operon, which contained serB, serC and the site-specific mutant serA Δ197 , was constructed and introduced into C. glutamicumAP2, leading to an increase of 70% in 5-ALA production. Further overexpression of the glyA gene increased production of 5-ALA by 150% over the control. 5-ALA production was thus significantly enhanced by engineering the glycine biosynthetic pathway. C.glutamicum AG3 produced 3.4 ± 0.2 g 5-ALA/l in shake-flask cultures in CGIIIM medium with the addition of 7.5 g glycine/l.

Conclusion

This is the first report of remodeling the serine and glycine biosynthetic pathway to improve the production of 5-ALA in C. glutamicum.
  相似文献   

3.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

4.

Objective

To identify useful native promoters of Corynebacterium glutamicum for fine-tuning of gene expression in metabolic engineering.

Results

Sixteen native promoters of C. glutamicum were characterized. These promoters covered a strength range of 31-fold with small increments and exhibited relatively stable activity during the whole growth phase using β-galactosidase as the reporter. The mRNA level and enzymatic activity of the lacZ reporter gene exhibited high correlation (R 2 = 0.96) under the control of these promoters. Sequence analysis found that strong promoters had high similarity of the -10 hexamer to the consensus sequence and preference of the AT-rich UP element upstream the -35 region. To test the utility of the promoter library, the characterized native promoters were applied to modulate the sucCD-encoded succinyl-CoA synthetase expression for l-lysine overproduction.

Conclusions

The native promoters with various strengths realize the efficient and precise regulation of gene expression in metabolic engineering of C. glutamicum.
  相似文献   

5.

Objective

To examine the role of a gene encoding flavin-containing monooxygenase (cFMO) from Corynebacterium glutamicum ATCC13032 when cloned and expressed in Escherichia coli for the production of indigo pigments.

Results

The blue pigments produced by recombinant E. coli were identified as indigo and indirubin. The cFMO was purified as a fused form with maltose-binding protein (MBP). The enzyme was optimal at 25 °C and pH 8. From absorption spectrum analysis, the cFMO was classified as a flavoprotein. FMO activity was strongly inhibited by 1 mM Cu2+ and recovered by adding 1–10 mM EDTA. The enzyme catalyzed the oxidation of TMA, thiourea, and cysteamine, but not glutathione or cysteine. MBP-cFMO had an indole oxygenase activity through oxygenation of indole to indoxyl. The recombinant E. coli produced 685 mg indigo l?1 and 103 mg indirubin l?1 from 2.5 g l-tryptophan l?1.

Conclusion

The results suggest the cFMO can be used for the microbial production of both indigo and indirubin.
  相似文献   

6.

Objectives

To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli.

Results

We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coliE. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L.

Conclusions

Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
  相似文献   

7.
8.

Objective

To develop an efficient synthetic promoter library for fine-tuned expression of target genes in Corynebacterium glutamicum.

Results

A synthetic promoter library for C. glutamicum was developed based on conserved sequences of the ??10 and ??35 regions. The synthetic promoter library covered a wide range of strengths, ranging from 1 to 193% of the tac promoter. 68 promoters were selected and sequenced for correlation analysis between promoter sequence and strength with a statistical model. A new promoter library was further reconstructed with improved promoter strength and coverage based on the results of correlation analysis. Tandem promoter P70 was finally constructed with increased strength by 121% over the tac promoter. The promoter library developed in this study showed a great potential for applications in metabolic engineering and synthetic biology for the optimization of metabolic networks.

Conclusions

To the best of our knowledge, this is the first reconstruction of synthetic promoter library based on statistical analysis of C. glutamicum.
  相似文献   

9.

Introduction

The production of marine drugs in its normal habitats is often low and depends greatly on ecological conditions. Chemical synthesis of marine drugs is not economically feasible owing to their complex structures. Biotechnology application via elicitation represents a promising tool to enhance metabolites yield that has yet to be explored in soft corals.

Objectives

Study the elicitation impact of salicylic acid (SA) and six analogues in addition to a systemic acquired resistance inducer on secondary metabolites accumulation in the soft coral Sarcophyton ehrenbergi along with the symbiont zooxanthellae and if SA elicitation effect is extended to other coral species S. glaucum and Lobophyton pauciliforum.

Methods

Post elicitation in the three corals and zooxanthella, metabolites were extracted and analyzed via UHPLC-MS coupled with chemometric tools.

Results

Multivariate data analysis of the UHPLC-MS data set revealed clear segregation of SA, amino-SA, and acetyl-SA elicited samples. An increased level ca. 6- and 8-fold of the diterpenes viz., sarcophytonolide I, sarcophine and a C28-sterol, was observed in SA and amino-SA groups, respectively. Post elicitation, the level of diepoxy-cembratriene increased 1.5-fold and 2.4-fold in 1 mM SA, and acetyl-SA (aspirin) treatment groups, respectively. S. glaucum and Lobophyton pauciliforum showed a 2-fold increase of diepoxy-cembratriene levels.

Conclusion

These results suggest that SA could function as a general and somewhat selective diterpene inducing signaling molecule in soft corals. Structural consideration reveals initial structure–activity relationship (SAR) in SA derivatives that seem important for efficient diterpene and sterol elicitation.
  相似文献   

10.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

11.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

12.

Objective

A potential thermotolerant l-leucine dehydrogenase from Laceyella sacchari (Ls-LeuDH) was over-expressed in E. coli, purified and characterized.

Results

Ls-LeuDH had excellent thermostability with a specific activity of 183 U/mg at pH 10.5 and 25 °C. It retained a high activity in 200 mM carbonate buffer from pH 9.5 to 11. The optimal temperature for Ls-LeuDH was 60 °C.

Conclusion

It is the first time that a thermostable and highly active LeuDH originating from L. sacchari has been characterized. It may be useful for medical and pharmaceutical applications.
  相似文献   

13.

Objective

To improve the production of welan gum and obtain a carotenoid-free strain while reducing the fermentation and post-treatment costs.

Results

The vitreoscilla globin (vgb) gene combined with the β-galactosidase (lacZ) promoter was inserted into the phytoene synthase (crtB) gene region of the chromosome in Alcaligenes sp. ATCC31555. When the recombinant strain was grown in a 5 l fermentor, welan gum was produced at 24 ± 0.4 g l?1 compared to 21 g ± 0.4 g l?1 in the wild type. Furthermore, the carotenoid-free welan gum produced using Alcaligenes sp. ATCC31555 VHb strain was less expensive with improved properties.

Conclusions

Alcaligenes sp. ATCC31555 VHb strain was a better neutral welan-producing strain with a higher production than the wild-type strain.
  相似文献   

14.

Objective

To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans.

Results

Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans.

Conclusions

A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller’s dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.
  相似文献   

15.

Objective

To study Candida albicans genotypes using RAPD and their susceptibility to fluconazole in healthy pregnant women and in vulvovaginal candidiasis (VVC) patients after topical treatment with clotrimazole.

Methods

Vaginal swabs were collected at t = 0 and t = 1 (1 month later) in pregnant women (control group, n = 33), and before (t = 0), at 1 month (t = 1) and at 2 months (t = 2) after clotrimazole treatment in pregnant women with VVC.

Results

Candida albicans was isolated in 30% of healthy pregnant women and 80% of patients with VVC. A high genetic heterogeneity was observed in C. albicans genotypes between individuals. In patients with VVC, topical antifungal treatment with clotrimazole was clinically effective, but only in a 62% C. albicans was eradicated. In patients in which C. albicans was not eradicated, this microorganism persisted for 1 or 2 months after the antifungal treatment. The persistent colonies were not associated with a specific genotype, but they were associated with higher MICs in comparison with colonies isolated from the control group.

Conclusions

Therapy with topical clotrimazole, despite a good clinical outcome, could not eradicate completely C. albicans allowing the persistence of genotypes, with higher MICs to fluconazole. More studies with higher number of patients are needed to validate this preliminary finding.
  相似文献   

16.

Objectives

Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress.

Results

Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g-1 dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain.

Conclusion

The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.
  相似文献   

17.

Objectives

To improve the production and molecular mass of the glycosaminoglycan hyaluronan (HA) in Bacillus subtilis by engineering hyaluronan synthase (HAS) from Streptococcus zooepidemicus.

Results

By mutating regions within HAS intracellular domains, five positive variants exhibiting higher HA production (from 1.22 to 2.24 g l?1) and molecular mass values (from 1.20 to 1.36 × 106 Da) were constructed and characterized. Overexpression of the V5 variant and the genes tuaD and glmU increased HA production and molecular mass to 2.8 g l?1 and 2.4 × 106 Da, respectively.

Conclusions

This study provides a novel strategy for improving HA production and its molecular mass.
  相似文献   

18.

Objectives

To evaluate different codon optimization parameters on the Saccharomyces cerevisiae-derived mating factor α prepro-leader sequence (MFLS) to improve Candida antarctica lipase B (CAL-B) secretory production in Pichia pastoris.

Results

Codon optimization based on the individual codon usage (ICU) and codon context (CC) design parameters enhanced secretory production of CAL-B to 7 U/ml and 12 U/ml, respectively. Only 3 U/ml was obtained with the wild type sequence while the sequence optimized using both ICU and CC objectives showed intermediate performance of 10 U/ml. These results clearly show that CC is the most relevant parameter for the codon optimization of MFLS in P. pastoris, and there is no synergistic effect achieved by considering both ICU and CC together.

Conclusion

The CC optimized MFLS increased secretory protein production of CAL-B in P. pastoris by fourfold.
  相似文献   

19.

Objectives

To establish a method for microbial transglutaminase (mTG)-mediated PEGylation of proteins at the level of lysine (Lys) residues.

Results

Carboxybenzyl-glutaminyl–glycinyl-methoxypolyethylene glycol (CBZ-QG-mPEG) was prepared by introducing carboxybenzyl-glutaminyl-glycine (CBZ-QG) to mPEG amine. The analysis by Fourier transform infrared spectroscopy and SDS-PAGE showed that CBZ-QG-mPEG was successfully synthesized and can be recognized by mTG as an acyl donor to modify therapeutic protein, cytochrome c (cyt c). Finally, under an optimized condition (cyt c 0.5 mg/ml, CBZ-QG-mPEG 11.25 mg/ml, mTG 0.5 mg/ml, 37 °C, 2 h), the PEGylation yield reached 76.5 %.

Conclusions

This is the first study regarding the PEGylation of protein at the level of Lys residues catalyzed by mTG. The novel method could be employed to immobilize active proteins and modify therapeutic proteins.
  相似文献   

20.

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号