首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Review of fungal chitinases   总被引:15,自引:0,他引:15  
Duo-Chuan L 《Mycopathologia》2006,161(6):345-360
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.  相似文献   

3.
4.
Chitinases enzymatically hydrolyze chitin, a highly abundant and utilized polymer of N-acetyl-glucosamine. Fungi are a rich source of chitinases; however, the phylogenetic and functional diversity of fungal chitinases are not well understood. We surveyed fungal chitinases from 373 publicly available genomes, characterized domain architecture, and conducted phylogenetic analyses of the glycoside hydrolase (GH18) domain. This large-scale analysis does not support the previous division of fungal chitinases into three major clades (A, B, C) as chitinases previously assigned to the “C” clade are not resolved as distinct from the “A” clade. Fungal chitinase diversity was partly shaped by horizontal gene transfer, and at least one clade of bacterial origin occurs among chitinases previously assigned to the “B” clade. Furthermore, chitin-binding domains (including the LysM domain) do not define specific clades, but instead are found more broadly across clades of chitinases. To gain insight into biological function diversity, we characterized all eight chitinases (Cts) from the thermally dimorphic fungus, Histoplasma capsulatum: six A clade, one B clade, and one formerly classified C clade chitinases. Expression analyses showed variable induction of chitinase genes in the presence of chitin but preferential expression of CTS3 in the mycelial stage. Activity assays demonstrated that Cts1 (B-I), Cts2 (A-V), Cts3 (A-V), Cts4 (A-V) have endochitinase activities with varying degrees of chitobiosidase function. Cts6 (C-I) has activity consistent with N-acetyl-glucosaminidase exochitinase function and Cts8 (A-II) has chitobiase activity. These results suggest chitinase activity is variable even within subclades and that predictions of functionality require more sophisticated models.  相似文献   

5.
Chitinase proteins are widely distributed across diverse biological systems. Chitinases hydrolyze chitin, chitosan, lipochitooligosaccharides, peptidoglycan, arabinogalactan and glycoproteins containing N-acetylglucosamine. Analyses of genome-wide sequence and microarray expression profilings show that chitinase genes are represented by large families and the individual member genes are expressed in diverse conditions. Chitinase proteins are members in the group of the pathogenesis-related proteins that are strongly induced when host plant cells are challenged by pathogen stress and thus chitinases constitute an important arsenal of plants against fungal pathogens. Transgenic plants have been produced that overexpress chitinases alone or in conjunction with other defense-related proteins. The phenotype analyses of such plants have shown enhanced disease resistance in large number of cases. Apart from defense against pathogen stress, chitinases are implicated in relationships between plant cells and fungi (e.g., mycorrhizae associations) and bacteria (e.g., legume/Rhizobium associations). Chitinases are also involved in plant abiotic stress responses as noted for osmotic, salt, cold, wounding and heavy metal stresses. Chitinases play a role in developmental aspects of plants too (i.e., regulation of plant embryogenesis process). A detailed account of the genetic diversity and functional aspects of plant chitinases is presented in this review.  相似文献   

6.
几丁质酶是植物抗真菌基因工程的热点之一。本文叙述了植物几丁质酶的特性、结构和功能、基因结构;按最新资料对以前的植物几丁质酶的分类系统进行了完善;概述了几丁质酶的分子进化的各家观点及其模型,并归纳了植物几丁质酶的生物学作用 。  相似文献   

7.
《Genomics》2020,112(1):749-763
Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.  相似文献   

8.
Chitinases (EC 3.2.1.14) are the glycoside hydrolases (GH) that catalyse the cleavage of β-(1,4) glycosidic linkages of chitin, which is a key element of fungal cell wall and insect's exoskeletons. Fungi have been considered as an excellent source for the production of extracellular chitinases, which could further be employed for chitin degradation to generate a range of bioactive chito-derivatives, i.e., oligosaccharides and glucosamine. Moreover, chitinases have diverse roles in various physiological functions, i.e., autolysis, cell wall remodeling, mycoparasitism and biocontrol. The advent of technology led to the sequencing of several fungal genomes and enabled the manipulation of novel effective chitinase genes to investigate their mechanistic and structural insights to decode the variabilities in chitin degradation. Further, the comprehensible understanding of attributes including substrate-binding sites and catalytic domains could give an insight into chitin catabolism for value-added products development. The review summarized various aspects of fungal chitinases viz. structure, mechanism, classification, properties, functions and application in the present precis. The study has also underlined the recent research related to the framework of substrate-binding clefts in fungal chitinases and its correlation with the hydrolytic and transglycosylation (TG) activity for the production of oligosaccharides with variable degrees of polymerization.  相似文献   

9.
Entomopathogenic and mycoparasitic fungi synthesize hydrolytic enzymes such as chitinases, proteinases and beta-glucanases. These enzymes can act synergistically, helping fungi to control insect pests and pathogens that attack productive crops, and offer potential economic benefit to agribusiness. A number of hydrolytic enzymes have also been utilized in industrial applications. This review focuses on biochemical and structural analyses of fungal enzymes, together with current research information on secretion mechanisms.  相似文献   

10.
Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5-10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies.  相似文献   

11.
Chitinases (E.C.3.2.1.14) are thought to play an important role in the defense of plants against fungal invasion. By screening a barley genomic library with a previously identified chitinase eDNA clone (clone 10), a genomic clone was isolated and characterized by DNA sequencing of the chitinase coding region and flanking sequences. This clone contains an open reading frame capable of coding for a 34 kD chitinase. Comparison of the amino acid sequence of the encoded protein with other barley chitinases suggests that the genomic clone encodes chitinase T, which has been characterized extensively by protein sequencing. Treatment of barley leaves and aleurone protoplasts with N-acetyl glucosamine oligomers which act as elicitors in other plants, did not lead to the elevation of the levels of the chitinases. However, infection of barley seedlings with the powdery mildew fungus, Erysiphe graminis, resulted in the induction of several isoforms of chitinase. The level and number of chitinase isozymes was correlated with the severity of infection. The infection-related chitinases found in barley leaves are different from those found in seeds.  相似文献   

12.
AIMS: To PCR-amplify the full-length genomic-encoding sequence for one chitinase from the facultative fungal pathogen Paecilomyces lilacinus, analyse the DNA and deduced amino acid sequences and compare the amino acid sequence with chitinases reported from mycopathogens, entomopathogens and nematopathogens. METHODS AND RESULTS: The encoding gene (designated as PLC) was isolated using the degenerate PCR primers and the DNA-Walking method. The gene is 1458 bp in length and contains three putative introns. A number of sequence motifs that might play a role in its regulation and function had also been found. Alignment of the translation product (designated as Plc, molecular mass of 45.783 kDa and pI of 5.65) with homologous sequences from other species showed that Plc belongs to Class V chitinase within the glycosyl hydrolase family 18. The phylogenetic and molecular evolutionary analysis using mega (Molecular Evolutionary Genetics Analysis) indicated that these chitinases from mycopathogens, entomopathogens and nematopathogens, the majority of which belong to glycosyl hydrolase family 18, were clustered into two well-supported subgroups corresponding to ascomycetes fungal and nonfungal chitinases (bacteria, baculoviruses). CONCLUSIONS: Our study showed that chitinases from mycoparasitic, entomopathogenic and nematophagous fungi are closely related to each other and reaffirmed the hypothesis that baculovirus chitinase is most likely to be of a bacterial origin - acquired by gene transfer. Bacterial and baculoviral chitinases in our study are potential pathogenicity factors; however, we still cannot ascribe any specific function to those chitinases from the fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report describing the chitinase gene and its translation product from Paecilomyces lilacinus, which constitutes the largest number of formulated biological nematicides reported so far, this is also the first study to analyse and resolve the phylogenetic and molecular evolutionary relationships among the chitinases produced by mycopathogens, entomopathogens and nematopathogens.  相似文献   

13.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

14.
15.
16.
Chitinases are enzymes that hydrolyze the N-acetylglucosamine polymer chitin, and they occur in diverse plant tissues over a broad range of crop and noncrop species. The enzymes may be expressed constitutively at low levels but are dramatically enhanced by numerous abiotic agents (ethylene, salicylic acid, salt solutions, ozone, UV light) and by biotic factors (fungi, bacteria, viruses, viroids, fungal cell wall components, and oligosaccharides). Different classes of plant chitinases are distinguishable by molecular, biochemical, and physicochemical criteria. Thus, plant chitinases may differ in substrate-binding characteristics, localization within the cell, and specific activities. Because chitin is a structural component of the cell wall of many phytopathogenic fungi, extensive research has been conducted to determine whether plant chitinases have a role in defense against fungal diseases. Plant chitinases have different degrees of antifungal activity to several fungi in vitro. In vivo, although rapid accumulation and high levels of chitinases (together with numerous other pathogenesis-related proteins) occur in resistant tissues expressing a hypersensitive reaction, high levels also can occur in susceptible tissues. Expression of cloned chitinase genes in transgenic plants has provided further evidence for their role in plant defense. The level of protection observed in these plants is variable and may be influenced by the specific activity of the enzyme, its localization and concentration within the cell, the characteristics of the fungal pathogen, and the nature of the host-pathogen interaction. The expression of chitinase in combination with one or several different antifungal proteins should have a greater effect on reducing disease development, given the complexities of fungal-plant cell interactions and resistance responses in plants. The effects of plant chitinases on nematode development in vitro and in vivo are worthy of investigation.  相似文献   

17.
18.
Lytic enzymes of mycoparasitic fungi of the genus Trichoderma, capable of suppressing several fungal phytopathogens that originate in air or soil, are reviewed. The topics analyzed include (1) regulation of production of chitinases, beta-1,3-glucanases, and proteases; (2) molecular and catalytic properties of purified enzymes; and (3) their in vitro ability to degrade cell walls and inhibit sporulation or germ-tube elongation in various phytopathogenic fungi. Among the results summarized are reports of cloning the expression of genes coding for certain lytic enzymes of Trichoderma spp. These genes are used for obtaining plant transgenes with increased resistance to fungal diseases and Trichoderma transformants that produce higher levels of one lytic enzyme (a chitinase or protease) and thereby exhibit a more pronounced ability to suppress phytopathogenic fungi.  相似文献   

19.
Chitinases are enzymes that serve critical roles in fungal growth and development, in resistance of plants to fungal pathogens, and in parasitism of insects by entomopathogenic fungi. The term "chitinase" is used for 3 enzymatic activities: N-acetylglucosaminidases, which sequentially release N-acetylglucosamine residues from the chitin polymer; chitobiosidases, which release disaccharides; and endochitinases, which cleave within the polymer and release oligosaccharides. We describe a technique where chitinases are separated on non-denaturing polyacrylamide gels, activities are visualized and characterized with chitinase specific substrates, and specific activities are estimated by image analysis. This technique permits a rapid determination of all of the types of chitinases present within a sample as well as their activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号