首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In the present study, in vitro selection technique using pathogen culture filtrate of Colletotrichum falcatum Went was employed with the aim to identify associations (if any), between selection at the cellular and plant level for red rot resistance in sugarcane (Saccharum sp.). Five to eight months old sugarcane calli of genotypes CoJ 88 and CoJ 64 were screened in vitro against pathogen culture filtrate for two selection cycles. Effect of pathogen culture filtrate on callus survival and/or proliferation was observed to be directly related to its concentration in the selection media. Calli survived and exhibited further proliferation at 5, 10 and 15% v/v pathogen culture filtrate concentrations whereas, at higher concentrations (20 and 25% v/v) proliferation was completely inhibited. Shoot regeneration percent was higher in calli selected on 5% pathogen culture filtrate concentration than those selected on 10 and 15% concentrations. In vivo screening of field transferred somaclones against two pathtypes (Cf 03 and Cf 08) showed considerable variation for red rot resistance. Somaclones regenerated from resistant and/or tolerant calli exhibited better resistance than the parental genotypes. The results indicated that in vitro selection for red rot resistance was effective and expressed when somaclones were screened in the field. This indicated a positive association between in vitro and in vivo methods of selection for disease resistance in sugarcane.  相似文献   

2.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

3.
Summary Calli derived from immature embryos of barley and wheat genotypes were screened for their resistance to purified culture filtrate produced by the fungus Helminthosporium sativum P.K. and B. Two selection methods were used: a continuous method in which four cycles of selection were performed one after another on toxic medium and a discontinuous method in which a pause on non-toxic medium was given after the second or third cycle of selection. The latter was superior as it allowed the calli to regain their regeneration ability. About 3,000 calli from two barley genotypes and 2,000 from two wheat genotypes were used for selection. The selection with the pathotoxins resulted in 6% to 17% surviving calli. Toxin tolerant callus lines of barley were characterised by protein isozymes. Zymograms showed one more isozyme than with the unselected sensitive callus. Barley and wheat plants have been regenerated from callus lines surviving the toxin treatment and in vivo testing against pathogen revealed that the majority of these plants were less sensitive.  相似文献   

4.
Long-term regeneration of sugarcane (Saccharum spp. hybrid and Saccharum spontaneum L.) callus cultures was achieved by selection of green callus on MS agar medium containing 0.5 mgl-1 picloram or 2,4-D. Newly initiated sugarcane callus cultures were a complex mixture of different tissue types including white, nonregenerative and green, regenerative tissues. The proportion of the tissue types changed as a function of time in culture, genotype, and amount and kind of auxin. Green callus on picloram media always regenerated green plants. Nine hybrids and ten wild relatives of sugarcane produced green calli on picloram media whereas only three hybrids were grown as green calli on 2,4-D media in long-term culture. Green calli were inoculated into liquid MS medium with 0.5 mgl-1 picloram for suspension culture. These cultures were totipotent after 19 months. For routine culture, we initiated callus cultures on modified MS medium with 3 mgl-1 2,4-D, then in two to three weeks we subcultured callus on MS medium with 0.5 mgl-1 picloram and selected for green callus. Green calli regenerated large numbers of green plants after more than four years.  相似文献   

5.
Stable callus cultures tolerant to NaCl (68 mM) were developed from salt-sensitive sugarcane cultivar CP65-357 by in vitro selection process. The accumulation of both inorganic (Na+, Cl and K+) and organic (proline and soluble sugars) solutes was determined in selected and non-selected calli after a NaCl shock in order to evaluate their implication in in vitro salt tolerance of the selected lines. Both salt-tolerant and non-selected calli showed similar relative fresh weight growth in the absence of NaCl. No growth reduction was observed in salt-tolerant calli while a significant reduction about 32% was observed in nonselected ones when both were cultivated on 68 mM NaCl. Accumulation of Na+ was similar in both salt-tolerant and non-selected calli in the presence of NaCl. Accumulation of Cl was lower in NaCl-tolerant than in non-selected calli while proline and soluble sugars were more accumulated in salt-tolerant than in non-selected calli when both were exposed to salt. K+ level decreased more severely in non-selected calli than in NaCl-tolerant ones after NaCl shock. The results indicated that K+ and Cl may play a key role in in vitro salt-tolerance in sugarcance cell lines obtained by in vitro selection and that organic solutes could contribute mainly to counteract the negative water potential of the outside medium.  相似文献   

6.
Nickel tolerant callus lines of Setaria italica L. were developed from callus cultures grown on MS medium supplemented with 0.5 mg·dm−3 kinetin+2.0 mg·dm−3 2,4-D+2.0 mg·dm−3 Ni+2. Standard growth parameters such as callus fresh and dry weight, growth tolerance index were used as indicators of nickel toxicity. Measurements as early as 2 weeks after the beginning of the treatments did not yield consistent results. However, growth tolerance index at 4, and 8 weeks after the beginning of treatments yielded significant differences among the non-tolerant and tolerant calli. The tolerant calli has enhanced growth at 2.0 mg·dm−3 Ni+2 while non-tolerant calli showed a reverse trend in growth in the presence of 2.0–2.5 mg·dm−3 of nickel. The tolerant calli differentiated into mass of embryogenic calli within 4 weeks of culture which could be maintained for prolonged period without loss of regenerative capacity.  相似文献   

7.
Summary Dogwood anthracnose, caused by the fungus Discula destructiva Redlin, is a severe disease of flowering dogwood (Cornus florida L.) and Pacific dogwood (C. nuttallii Aud.). Disease control is inadequate in nurseries and landscapes and absent in the forest, and resistant cultivars are not commercially available. The ability to select tissues insensitive to culture filtrates from D. destructiva in vitro offers a novel and important approach for the selection of dogwood genotypes that are resistant to or tolerant of this devastating fungus. Embryo-derived dogwood callus cultures were established on Murashige and Skoog medium amended with benzyladenine (BA) and either 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA). Selection for insensitivity to D. destructiva metabolites was done by placement of individual cultures on media amended with progressively higher concentrations of a partially purified culture filtrate (PPCF) containing lowmolecular-weight compounds. Following this selection process, cultures were challenged in a dose-response format with PPCF to determine whether the sensitivity of the callus to the culture filtrate had changed. During the selection period, the fresh weight of callus grown on medium containing 2,4-D and amended with PPCF was always less than that of callus grown on medium amended with the same concentration of potato-dextrose broth (PDB, negative control). Fresh weight of callus was greater on medium containing NAA amended with PPCF than on medium with the same concentration of PDB. Callus selected in the presence of NAA showed decreased sensitivity to toxic metabolites at higher concentrations of culture filtrate. The in vitro system described may assist in the identification of disease-resistant germplasm important to the long-term survival of flowering dogwood.  相似文献   

8.
Callus cultures derived from leaf segments of chrysanthemum cultivar ‘Snow Ball’ which was susceptible to Septoria obesa were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant cell lines were selected by culturing callus on growth medium containing various concentrations of S. obesa filtrate. Resistant calluses obtained after two cycles (30 d each cycle) of selection were used for plant regeneration. About 30% of the plants regenerated from the resistant calluses and 70–80% of the plants raised from cuttings had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

9.
Summary Individual callus cultures were initiated from 400 immature embryos of bacterial leaf spot-susceptible Sunhigh peach. Each was subjected to several selection cycles of a toxic culture filtrate produced by Xanthomonas campestris pv. pruni, the causal agent of leaf spot of peach. Progressively higher concentrations of the filtrate were used in each cycle. Two calli survived, and two plants were regenerated from each of the surviving calli. Each of the four clones was propagated in vitro and tested for whole plant resistance to X. c. pv. pruni. Results from bioassays on greenhouse-grown plants indicated that two out of the four selected clones were significantly more resistant to X. c. pv. pruni than the parental cv Sunhigh. In addition, one clone was significantly more resistant than the moderately resistant cv Redhaven.  相似文献   

10.
该研究以黑果枸杞(Lycium ruthenicum)无菌苗为材料,建立了愈伤组织来源的原生质体再生体系,采用ISSR和FCM技术对再生植株进行了遗传稳定性分析。结果表明:(1)黑果枸杞叶片愈伤组织是产生原生质体的最好材料,在含0.5 mg·mL-1甘露醇的酶液中,继代1次的叶片愈伤组织中原生质体产量为7.77×106个·g-1,活力为92%。(2)改良MS培养基 固体液体双层培养(MS2 固液双层)是培养原生质体的最好方式,培养10 d的原生质体分裂频率为45.9%,培养20 d的细胞团形成频率为22.9%。(3)在1.5 mg·mL-1 6 BA+0.1 mg·mL-1 IBA+MS培养基中,叶片愈伤组织产生的原生质体可分化获得再生植株。(4)ISSR分析显示,再生植株的平均遗传相似系数为0.88;FCM显示再生植株为二倍体,与亲本植株一致。该研究结果为进一步研究枸杞体细胞杂交技术转移野生植物抗逆遗传性状提供科学依据,为枸杞优良品种的选育奠定了基础。  相似文献   

11.
Summary From two lines of Medicago sativa characterized by a high regeneration capability, calli resistant to culture filtrate of Fusarium oxysporum f. sp. medicaginis have been selected. In these calli regeneration capability was greatly reduced and only one plant per callus was recovered. Regenerated plants have been evaluated for resistance to culture filtrate and for in vivo resistance to the pathogen. Three plants out of eight were resistant to the fungus and a high correlation between resistance to culture filtrate and in vivo resistance was observed.Research work supported by C.N.R., Italy. Special grant I.P.R.A. Subproject 1, paper no. 1468  相似文献   

12.
An osmotically (mannitol) tolerant callus line of Vigna radiata (L.) Wilczek has been isolated from callus cultures grown on modified PC-L2 medium supplemented with increasing concentrations of mannitol. The tolerance was stable and retained after growth in the absence of mannitol selection for 2 months. The growth of the tolerant line, in the presence of mannitol (540 mol m-3) was comparable to that of a sensitive callus line growing in the absence of mannitol. This line not only grew well on media containing up to 720 mol m-3 mannitol, but also required 450 mol m-3 mannitol for its optimal growth. Osmotically tolerant callus also showed increased tolerance to NaCl (0–250 mol m-3) stress as compared to sensitive callus. Accumulation of Na+ was lower, and the level of K+ was more stable in osmotically tolerant than in sensitive calli, when both were exposed to salt. The free proline content of both tolerant and sensitive calli increased on media supplemented with mannitol or NaCl. However, the proline content of sensitive callus was higher than in tolerant callus in the presence of same concentrations of mannitol or NaCl.Abbreviations NAA -naphthaleneacetic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine  相似文献   

13.
Summary Plantlets were regenerated from calli derived from leaf expiants of three genotypes of Solanum melongena (two parental genotypes and their hybrid). The cytological analysis showed that a) plants regenerated were all mixoploid, b) toxic medium (basal medium added with filtrate culture of Verticillium dahliae) was able to evidence karyotypic differences between genotypes not displayed by plants regenerated from callus grown on control medium, c) chromosomal mosaicism persists up to plant maturity and also in the selfed progeny. The results are discussed in terms of a selective process involving genes controlling chromosome number and/or a direct effect of toxic medium on the activity of the same genes.This research is supported by a grant from ERSO (Ente per la Ricerca e Sperimentazione in Ortoflorifrutticoltura e Sementi) — Regione Emilia Romagna  相似文献   

14.
Summary Selection and screening methods were devised which resulted in the identification of a number of somatic hybrid callus clones following fusion of Lycopersicon esculentum protoplasts and L. pennellii suspension culture protoplasts. Visual selection for callus morphology combined with a high fusion frequency and irradiation of one parental protoplast type (137Cs source, 1.5 Krads) resulted in selection of a callus clone population containing a high proportion of somatic hybrids. Analysis of a dimeric isozyme for the presence of a heterodimeric form was found to be satisfactory for distinguishing parental-type calli, somatic hybrid calli, and mixed calli derived from both types of unfused parental cells. No somatic hybrid calli produced shoots, although the sexual hybrid between L. esculentum and L. pennellii regenerated well under the culture conditions employed. This result suggests that the non-regenerable growth habit of the L. pennellii suspension culture was dominant in the somatic hybrid. The culture conditions described here are suitable for obtaining regenerated plants from L. esculentum mesophyll protoplasts. L. esculentum protoplast calli from fusion cultures gave rise to shoots with L. esculentum phenotype at higher frequency than calli from control unfused L. esculentum mesophyll protoplast cultures. The use of probes for species-specific organelle DNA fragments allowed identification of organelle DNA restriction fragments in digests of total DNA from small samples of individual callus clones. The callus clones analyzed either carried predominantly one parental plastid DNA type or mixtures of both types. Use of a mitochondrial DNA (mtDNA) probe which distinguishes two parental mtDNA fragments revealed that the L. pennellii-specific fragment was present in all clones examined, but the L. esculentum fragment was absent or in low proportion.  相似文献   

15.
One thousand and ninety-two poplars were regenerated in vitro from callus of 13 poplar clones representing the Leuce, Aigeiros and Tacamahaca sections. At lest 44 of the regenerants differed in some way from the original clones. Somaclonal variation occurred more frequently in poplars of the Leuce section (8%) than in those of the Aigeiros or Tacamahaca sections (1%). Variation was noticed in growth habit, leaf shape or indentation but not in the reaction to four Melampsora races. However, after one growing season in the field, a few regenerants from calli of two clones (Ogy and Rap) differed in their susceptibility vis à vis the original clones. Cultivation of callus from Leuce poplars that had survived exposure to increasing concentrations of toxins from Hypoxylon mammatum gave rise to a toxin-tolerant line from which toxin tolerant plants were regenerated. Flow cytometry to measure the DNA content of nuclei showed that regenerants tended to be tetraploid.Abbreviations NAA naphthaleneacetic acid - BAP benzylaminopurine - TDZ thidiazuron - MS Murashige & Skoog medium  相似文献   

16.
Zinc tolerant and non-tolerant ecotypes of Silene vulgaris (Moench) Garcke were examined for their suitability to provide an efficient and reproducible callus formation and regeneration system. Successful and rapid regeneration of adventitious shoots from callus was achieved in leaf tissue but not root or apical meristematic tissue using concentrations of plant growth regulators that spanned a concentration range of (0.05–1 mg l–1) NAA and (0.5–10 mg l–1) BAP respectively. Large differences were observed between ecotypes regarding both callus formation and shoot regeneration on the different hormone concentrations. Leaf explants incubated on basal media with different concentrations of auxin/cytokinin demonstrated initial callus formation after 3 weeks of incubation. Callus initiation was seen to develop from the wounded margins of the leaf explants and, after 2 weeks the initially dark callus became more swollen and green. A mean of 6–8 shoots per leaf explant was observed and the survival rate of these regenerates was seen to be 90%. All regenerated plants that were transferred to soil after the emergence of roots, were seen to have no disturbed morphological characteristics. This study demonstrates the stability of the zinc tolerance traits in the regenerated explants and the potential use of this calli formation and regeneration system in Silene vulgaris. Further, this study is a necessary pre-requite for the development of a genetic transformation system with which to study the genetic basis of zinc and, other heavy metal tolerances in a species with a naturally selected high-level tolerance.  相似文献   

17.
Effects of four culture media on callus induction, regeneration and number of plants per unit culture were studied with mature seeds from five indica rice genotypes as explants. Based on the morphology, the calli were classified into four types as I to IV. Type I and type II are most suited to initiate suspension cultures or as target material for transformation. Number of plants regenerated per unit culture, formation of easily dissociating cell clusters and frequency of type I and type II calli were highest on NBKNB medium. Thus NBKNB medium is suitable for in vitro culture of even the hitherto recalcitrant indica genotypes.  相似文献   

18.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

19.
Summary Dihaploid calli from Solanum tuberosum were selected, which were resistant to the culture filtrate of Phytophthora infestans. Each of the resistant calli was resistant to all four pathotypes of Phytophthora used in these experiments. The resistance was not lost through regeneration and the induction of new callus.  相似文献   

20.
Summary Callus cultures were initiated from immature embryos of oneTriticum aestivum and threeT. durum cultivars. Growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.5, and 0.7%) added to the culture medium during two subsequent subcultures (4 wk each). The growth rate of the calli was determined by the relative fresh weight callus growth (RFWCG). The callus growth of all investigated genotypes was slightly changed in the presence of 0.3 and 0.5% NaCl, but strongly inhibited by 0.7% NaCl. Selected NaCl-tolerant clones were isolated and plants were regenerated on MS-based regeneration medium without NaCl. The regeneration capacity of the selected calli was highly reduced compared to the control. The highest number of regenerants was scored for cv. Gladiator (T. aestivum). All regenerated plants were morphologically normal and many developed to maturity and set seeds. Seedlings from the R1 generation of selected and control plants were treated with 0.5% NaCl in vivo in liquid cultures for 6 wk. Salt tolerance of the progenies of selected plants appeared in all cultivars, but those derived from calli grown on medium with 0.7% NaCl showed the highest survival rate.T. aestivum showed higher tolerance to NaCl salinity thanT. durum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号