首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

2.
As a step toward greater understanding of the genetics of verticillium wilt resistance in plants, we report the sequencing of a candidate wilt resistance gene, mVe1, from the mint diploid model species, Mentha longifolia (Lamiaceae). mVe1 is a putative homolog of tomato (Solanum lycopersicum L.) verticillium wilt (Ve) resistance genes. The mVe1 gene has a coding region of 3,051 bp. The predicted mVe1 protein contains a leucine-rich repeat domain, a common feature of plant disease resistance proteins. We compared 13 mVe1 alleles from three mint species. These alleles shared 96.2–99.6% nucleotide identity. We analyzed four M. longifolia populations segregating with respect to mVe1 alleles and wilt resistance versus susceptibility and found one association between mVe1 genotype and wilt phenotype. We conclude that mVe1 may play a role in mint verticillium wilt resistance, but variation for resistance in our segregating progenies is likely polygenic. Therefore, further investigations of mVe1 and identification of additional candidate genes are both warranted.  相似文献   

3.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

4.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

5.
Summary To achieve reliable stable transformation of sweet potato, we first developed efficient shoot regeneration for stem explants, leaf disks, and petioles of sweet potato (Ipomoea batatas (L.) Lam.) cultivar Beniazuma. The shoot regeneration protocol enabled reproducible stable transformation mediated by Agrobacterium tumefaciens strain EHA105. The binary vector pIG121Hm contains the npt II (pnos) gene for kanamycin (Km) resistance, the hpt (p35S) gene for hygromycin (Hyg) resistance, and the gusA (p35S) reporter gene for β-glucuronidase (GUS). After 3 d co-cultivation, selection of calluses from the three explant types began first with culture on 50 mg l−1 of Km for 6 wk and then transfer to 30 mg l−1 of Hyg for 6–16 wk in Linsmaier and Skoog (1965) medium (LS) also containing 6.49 μM 4-fluorophenoxyacetic acid and 250 mgl−1 cefotaxime in the dark. The selected friable calluses regenerated shoots in 4 wk on LS containing 15.13 μM abscisic acid and 2.89 μM gibberellic acid under a 16h photoperiod of 30 μmol m−2s−1. The two-step selection method led to successful recovery of transgenic shoots from stem explants at 30.8%, leaf dises 11.2%, and petioles 10.7% stable transformation efficiencies. PCR analyses of 122 GUS-positive lines revealed the expected fragment for hpt. Southern hybridization of genomic DNA from 18 independent transgenic lines detected the presence of the gusA gene. The number of integrated T-DNA copies varied from one to four.  相似文献   

6.
An in vitro method for propagation of Holarrhena antidysenterica Wall. has been developed using nodal explants from mature trees growing in the field. Irrespective of concentrations and combinations of growth regulators used, the axillary and terminal buds sprouted and elongated when inoculated on Murashige and Skoog (MS) medium. The highest numbers of shoots were formed when sprouted shoots were subcultured from MS basal medium onto MS medium containing 2 mg dm−3 N6-benzyladenine (BA) and 0.5 mg dm−3 α-naphthalene acetic acid (NAA). The shoot number further increased upon subculture on MS medium containing 0.5 mg dm−3 BA. By repeated sub-culturing of shoots derived from nodal axillary buds, a high frequency multiplication rate was established. The elongated shoots were excised and rooted in auxin free MS basal medium. Ex vitro rooting of in vitro formed shoots was achieved upon dipping the microshoots for 2 min in 2 mg dm−3 of indole-3-butyric acid solution. Successful field establishment and high (80–90 %) survival of plants was observed.  相似文献   

7.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

8.
A general in vitro cloning system was established for four Helleborus species: H. argutifolius, H. foetidus, H. niger and H. orientalis. The plant material was introduced in vitro from axillary buds. A Murashige and Skoog (MS)—based medium (Murashige and Skoog 1962) was used supplemented with 2% (w/v) sucrose, 2-isopentenyladenine (2-iP) and 6-benzylaminopurine (BA). Multiplication rates depended on the genotype and varied from 1.3 for H. foetidus till 3.8 for H. niger. The first results showed that the rooting phase could be done ex vitro. Rooting was induced by a drench for one week in a solution of indole-3-butyric acid (IBA -3 mg l−1) and 1-naphthaleneacetic acid (NAA-1 mg l−1) at 5°C.  相似文献   

9.
Aspergillus section Nigri strains Aspergillus aculeatus Ege-K 258, A. foeditus var. pallidus Ege-K156, A. niger Ege-K 4 and A. tubingensis Ege-K 265 were used to treat olive mill wastewater (OMW) in an investigation aimed at exploring their dephenolisation and decolourisation ability and, consequently, the economic feasibility of using any or all of these strains in a pre-treatment step in the processing of OMW. Of these strains A. tubingensis Ege-K 265 resulted in an 80% decolourisation of twofold-diluted OMW and a 30% decolourisation of undiluted OMW; in addition, it was able to remove approximately 30% of all phenolic compounds in both twofold-diluted and undiluted OMW. We conclude that A. tubingensis Ege-K 265 could be effectively used in the pre-treatment step of a combined aerobic-anaerobic process to solve the environmental problems caused by OMW in Mediterranean countries.  相似文献   

10.
We have been attempting for some time to discover a compound evidencing antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The dieckol isolated from Ecklonia stolonifera has been shown to exhibit antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA. The minimum inhibitory concentrations (MICs) of dieckol were determined in a range of 32 to 64 μg/mL against standard MSSA and MRSA strains. Furthermore, dieckol clearly reversed the high-level ampicillin and penicillin resistance of MRSA. The MICs of ampicillin against two standard strains of MRSA were dramatically reduced from 512 to 0.5 μg/mL in combination with 1/4 MIC of dieckol (16 μg/mL). The fractional inhibitory concentration (FIC) indices of ampicillin and penicillin were measured from 0.066 to 0.266 in combination with 8 or 16 μg/mL of dieckol against all tested MRSA strains, thereby suggesting that dieckol-ampicillin or dieckol-penicillin combinations exert a synergistic effect against MRSA. The results of this study indicate that dieckol, administered in combination with β-lactams, may prove effective in the treatment of MRSA infections. Our finding may also contribute to the development of an alternative phytotherapeutic anti-MRSA agent.  相似文献   

11.
Common bermudagrass, Cynodon dactylon, is a widely used warm-season turf and forage species in the temperate and tropical regions of the world. We have been able to transform the species using Agrobacterium-mediated approach. In seven experiments reported here, a total of 67 plates of calluses and suspensions were infected with Agrobacterium tumefaciens strains, and nine hygromycin B resistant calluses were obtained after selection. Among them two green independent transgenic plants were recovered. The plants growing in pots looked relatively compact at the beginning, but the ploidy level of the plants, as determined by nuclear DNA content, was not altered.  相似文献   

12.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

13.
Biological control of the cyst forming nematode Heterodera cajani was studied on sesame using plant growth promoting rhizobacteria (PGPR) Pseudomonas aeruginosa LPT3 and LPT5. Based on plant growth promoting attributes, two fluorescent pseudomonads, LPT3 and LPT5 were evaluated for their efficacy against cyst forming nematode Heterodera cajani that parasitize Sesamum indicum. Pseudomonas aeruginosa LPT5 produced IAA, HCN, chitinase, glucanase and siderophore, and also solubilized inorganic phosphate in vitro. Moreover, LPT5 resulted in mortality of second stage juveniles of H. cajani, which was 13% higher as compared to P. aeruginosa LPT3. Interestingly, when both strains were inoculated together for the management of H. cajani on Sesamum indicum the population of H. cajani was reduced significantly, in field trial. Approximately 60% reduction in cyst and juveniles population was recorded with LPT5 coated seeds, while LPT3 resulted in 49% reduction in cyst and juvenile population as compared to control. Plants grown with seeds bacterized with LPT5 and reduced doses of urea, diammonium phosphate (DAP), muriate of potash (K) and gypsum gave maximum increase in yield, in comparison to that of plants raised under the influence of recommended or full doses of the chemical fertilizers. Pseudomonas aeruginosa LPT5 also showed excellent root colonization.  相似文献   

14.
Kappaphycus striatum var. sacol was grown in two separate studies: (1) at two stocking densities, and (2) at four different depths, each for three different durations of culture (30, 45 and 60 days) in order to determine the growth rate of the seaweed and evaluate the carrageenan content and its molecular weight. The results demonstrated that stocking density, duration of culture and depth significantly (P < 0.01) affected the growth rate, carrageenan content and molecular weight of K. striatum var. sacol. Decreasing growth rate was observed at both stocking densities and at four depths as duration of culture increased. A lower stocking density (500 g m−1line−1) showed a higher growth rate for the shortest durations, i.e. 30 days, as compared to those grown at a higher density. Likewise, decreasing growth rate was observed as depth increased, except at 50 cm after 60 days of culture. A 45-day culture period produced the highest molecular weight at both stocking densities (500 g m−1line−1 = 1,079.5 ± 31.8 kDa, 1,000 g m−1line−1 = 1,167 ± 270.6 kDa). ‘Sacol’ grown for 30 days at 50 cm (1,178 kDa) to 100 cm (1,200 kDa) depth showed the highest values of molecular weight of carrageenan extracted. The results suggested that K. striatum var. sacol is best grown at a stocking density of 500 g m−1line−1, at a depth of 50–100 cm, and for a duration of 30 days in order to provide the highest growth rate, carrageenan content and molecular weight.  相似文献   

15.
Mature seed-derived embryogenic calli of indica rice (Oryza sativa L. cv. PAU201) were induced on semisolid Murashige and Skoog medium supplemented with 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid + 0.5 mg dm−3 kinetin + 560 mg dm−3 proline + 30 g dm−3 sucrose + 8 g dm−3 agar. Using OsglyII gene, out of 3180 calli bombarded, 32 plants were regenerated on medium containing hygromycin (30 mg dm−3). Histochemical GUS assay of the hygromycin selected calli revealed GUS expression in 50 % calli. Among the regenerants, 46.87 % were GUS positive. PCR analysis confirmed the presence of the transgene of 1 kb in 60 % of independent plants. Further, these plants have been grown to maturity in glasshouse. In vitro screening for salt tolerance showed increase in fresh mass of OsglyII putative transgenic calli (185.4 mg) as compared to control calli (84.2 mg) on 90 mM NaCl after 15 d. When exposed to 150 mM NaCl, OsglyII putative transgenic plantlets showed normal growth while the non-transgenic control plantlets turned yellow and finally did not survive.  相似文献   

16.
Mammillaria species are the most numerous within Cactaceae family, and some of them are threatened with extinction as a result of human activities. In this work, results of in vitro propagation are presented for ten Mammillaria species, testing 20 combinations of indole-3-acetic acid (IAA) and kinetin. Best results on shoot formation were obtained using kinetin at two levels: 27.9 and 46.5 μM. All IAA levels tested were able to induce de novo shoot formation in M. bocasana, M. densispina, M. hahniana, M. hutchisoniana, M. orcutii, M. pectinifera, M. perbella, M. picta, M. rhodantha, and M. zephyranthoides. Depending on the IAA level tested, four responding groups were observed concerning their highest shoot-formation number. For all species, the highest average of shoot formation was achieved with 5.7:46.5 or 11.4:46.5 μM IAA/kinetin, yielding 4.8 and 4.7 shoots per explant, respectively, in 60 d. Rooting of regenerated shoots was achieved by leaving the explants in their shoot-induction medium or transferring them to half-strength MS medium. Hardening of regenerated plants was successfully achieved by planting them in peat moss substrate after a desiccation treatment at room temperature for 3 d.  相似文献   

17.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. Differences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105–116, 2001). We tested the predictions from this theory that the circadian period (τ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 −/− and mCry2 −/− knockout mice both consistently increased τ with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deficient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202–209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deficient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a differential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening–Morning differentiation.  相似文献   

18.
Weakly electric fish react to resistance and capacitance of objects that locally amplify and distort their self-generated Electric Organ Discharge (EOD) received by their skin receptors. The successive-layer structure of tissues gives certain biological materials a kind of electrical anisotropy. A polarized object, for instance, will conduct current differently in one versus the other direction. This diode-like electric anisotropy should make a significant difference to a Mormyrid who emits a directional, biphasic EOD and whose receptors are sensitive to EOD amplitude and distortion changes. The ability of Gnathonemus petersii (Mormyridae) to discriminate polarity was investigated on a virtual object by manipulating changes in a circuit comprised of diodes combined in various ways. The “novelty response,” an increase in the discharge rate in response to perceived changes, was used to assess the fish’s sensitivity. Indeed, G. petersii detects polarized objects and discriminates between polarity directions. However, the diode-like anisotropy entails a voltage threshold. Because voltage decreases with distance, and the EOD comprises opposite phases of different amplitudes, the active spaces of detection and discrimination are different and depend on the object orientation. Electric polarity thus extends the “palette” of dielectric properties used by this fish to evaluate object quality, direction, and distance.  相似文献   

19.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

20.
Transgenic plants of hyacinth (Hyacinthus orientalis L.) cvs. Edisson and Chine Pink have been obtained by Agrobacterium-mediated transformation. Leaf explants of the both hyacinth cultivars regenerated shoots on MS medium containing 2.2 μM BAP and 0.3 μM NAA at a frequency of 95%. A. tumefaciens strain CBE21 carrying binary vector pBIThau35 was used for transformation. Plasmid pBIThau35 has been produced by cloning preprothaumatin II cDNA into pBI121 instead of uidA gene. Inoculated leaf explants formed calli and shoots at high frequency on selective medium with 100 mg l−1 kanamycin. Four hyacinth transgenic lines of cv. Chine Pink and one line of cv. Edisson have been selected on medium containing 200 mg l−1 kanamycin. The insertion of thaumatin II gene into hyacinth genome has been confirmed by PCR-analysis. All transgenic plants expressed substantial amounts of thaumatin II (between 0.06 and 0.28% of the total soluble protein). Hyacinth transgenic lines were assayed for resistance to the pathogenic fungi Fusarium culmorum and Botrytis cinerea. There were no significant differences between nontransformed control and transgenic leaves of both cultivars. At the same time the bulbs of the transgenic line Н7401 cv. Chine Pink showed the higher level of resistance to B. cinerea, the bulbs of the transgenic line Н7404 were more resistant to F. culmorum. In both cases the signs of the fungal disease were developed more slowly. The resistance of the bulbs cv. Edisson line to these fungi was not changed. All transgenic hyacinth plant were successfully transferred to soil for further evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号