首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
Xiang Y  Huang X  Wang T  Zhang Y  Liu Q  Hussey PJ  Ren H 《The Plant cell》2007,19(6):1930-1946
Villin/gelsolin/fragmin superfamily proteins have been shown to function in tip-growing plant cells. However, genes encoding gelsolin/fragmin do not exist in the Arabidopsis thaliana and rice (Oryza sativa) databases, and it is possible that these proteins are encoded by villin mRNA splicing variants. We cloned a 1006-bp full-length cDNA from Lilium longiflorum that encodes a 263-amino acid predicted protein sharing 100% identity with the N terminus of 135-ABP (Lilium villin) except for six C-terminal amino acids. The deduced 29-kD protein, Lilium ACTIN BINDING PROTEIN29 (ABP29), contains only the G1 and G2 domains and is the smallest identified member of the villin/gelsolin/fragmin superfamily. The purified recombinant ABP29 accelerates actin nucleation, blocks barbed ends, and severs actin filaments in a Ca(2+)- and/or phosphatidylinositol 4,5-bisphosphate-regulated manner in vitro. Microinjection of the protein into stamen hair cells disrupted transvacuolar strands whose backbone is mainly actin filament bundles. Transient expression of ABP29 by microprojectile bombardment of lily pollen resulted in actin filament fragmentation and inhibited pollen germination and tube growth. Our results suggest that ABP29 is a splicing variant of Lilium villin and a member of the villin/gelsolin/fragmin superfamily, which plays important roles in rearrangement of the actin cytoskeleton during pollen germination and tube growth.  相似文献   

2.
The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.  相似文献   

3.
Pig plasma gelsolin (Mr = 81595; 739 residues) contains 704 identical residues out of a maximum 730 when compared to the cytoplasmic form of human gelsolin. The cDNA sequence also codes for a peptide of 33 residues N-terminal to the nine-residue plasma extension sequence previously reported: these 33 residues are highly homologous to the human signal peptide and plasma extension. Comparison of the gelsolin sequences with chicken brush border villin, severin from Dictyostelium discoideum and fragmin from Physarum polycephalum shows a strong evolutionary relationship between all these proteins. There are six large repeating segments in gelsolin and villin, and three similar segments in severin and fragmin. Although these multiple repeats cannot be related to any known function of these actin-severing proteins, this superfamily of proteins appears to have evolved from an ancestral sequence of 120 to 130 amino acid residues.  相似文献   

4.
A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.  相似文献   

5.
Actin-binding proteins are conserved from slime molds to man   总被引:5,自引:0,他引:5  
DNA clones encoding the actin-binding proteins alpha-actinin and severin from Dictyostelium discoideum were isolated and sequenced. Comparisons of the deduced amino acid sequences with proteins from other species showed striking similarities at distinct regions. The F-actin cross-linking molecule alpha-actinin carries two characteristic EF-hand structures highly homologous to the Ca2+-binding loops of proteins from the calmodulin superfamily. An N-terminal region that is conserved in alpha-actinin from D. discoideum and vertebrates is also related to parts of the dystrophin sequence and might represent the F-actin binding site. Severin, gelsolin, villin, and fragmin share homologous sequences that are believed to participate in the severing activity of these proteins.  相似文献   

6.
Khurana S  George SP 《FEBS letters》2008,582(14):2128-2139
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.  相似文献   

7.
The organization of the actin cytoskeleton has been implicated in sclerenchyma development. However, the molecular mechanisms linking the actin cytoskeleton to this process remain poorly understood. In particular, there have been no studies showing that direct genetic manipulation of the actin cytoskeleton affects sclerenchyma development. Villins belong to the villin/gelsolin/fragmin superfamily and are versatile actin-modifying proteins. Several recent studies have implicated villins in tip growth of single cells, but how villins act in multicellular plant development remains largely unknown. Here, we found that two closely related villin isovariants from Arabidopsis, VLN2 and VLN3, act redundantly in sclerenchyma development. Detailed analysis of cross-sections from inflorescence stems of vln2 vln3 double mutant plants revealed a reduction in stem size and in the number of vascular bundles; however, no defects in synthesis of the secondary cell wall were detected. Surprisingly, the vln2 vln3 double mutation did not affect cell elongation of inter-fascicular fibers. Biochemical analyses showed that recombinant VLN2 was able to cap, sever and bundle actin filaments, similar to VLN3. Consistent with these biochemical activities, loss of function of VLN2 and VLN3 resulted in a decrease in the amount of F-actin and actin bundles in plant cells. Collectively, our findings demonstrate that VLN2 and VLN3 act redundantly in sclerenchyma development via bundling of actin filaments.  相似文献   

8.
Severin is a gelsolin prototype   总被引:2,自引:0,他引:2  
A number of Ca2(+)-activated actin filament severing proteins have been identified in eukaryotic cells of diverse lineages. Gelsolin and villin, with molecular mass of about 80-90 kDa, and severin and fragmin, with molecular mass of about 40 kDa, have been isolated from vertebrates and invertebrates, respectively. We report here a direct comparison of the functional properties of gelsolin and severin, and the finding that the actin filament severing activity of severin, like that of gelsolin, is inhibited by polyphosphoinositides. However, severin does not nucleate actin filament assembly as well as gelsolin. These characteristics are very similar to those ascribed to the NH2-terminal half of gelsolin, supporting the idea that they are evolutionarily related. Regulation of severin by polyphospholipids raises the possibility that it may participate in agonist-stimulated regulation of the actin cytoskeleton in Dictyostelium discoideum.  相似文献   

9.
Mimosa pudica L. rapidly closes its leaves and bends its petioles downward when mechanically stimulated. It has been suggested that the actin cytoskeleton is involved in the bending motion since both cytochalasin B and phalloidin inhibit the motion. In order to clarify the mechanism by which the actin cytoskeleton functions in the motion, we attempted to find actin-modulating proteins in the M. pudica plant by DNase I-affinity column chromatography. The EGTA-eluate from the DNase I column contained proteins with apparent molecular masses of 90- and 42-kDa. The 42-kDa band consisted of two closely migrating components: the slower migrating component was actin while the faster migrating components was a distinct protein. The eluate showed an activity to sever actin filaments and to enhance the rate of polymerization of actin, both in a Ca(2+)-dependent manner. Microsequencing of the faster migrating 42-kDa protein revealed its similarity to proteins in the gelsolin/fragmin family. Our results provide the first biochemical evidence for the presence in a higher plant of a gelsolin/fragmin family actin-modulating protein that severs actin filament in a Ca(2+)-dependent manner.  相似文献   

10.
Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca2+ insensitive. Based on phylogenetic analyses and conservation of Ca2+ binding sites, we predict that VLN3 is a Ca2+-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the “catch and zipper” action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.  相似文献   

11.
A family of homologous actin-binding proteins sever and cap actin filaments and accelerate actin filament assembly. The functions of two of these proteins, villin and gelsolin, and of their proteolytically derived actin binding domains were compared directly by measuring their effects, under various ionic conditions, on the rates and extents of polymerization of pyrene-labeled actin. In 1 mM Ca2+ and 150 mM KCl, villin and gelsolin have similar severing and polymerization-accelerating properties. Decreasing [Ca2+] to 25 microM greatly reduces severing by villin but not gelsolin. Decreasing [KCl] from 150 to 10 mM at 25 microM Ca2+ increases severing by villin, but not gelsolin, over 10-fold. The C-terminal half domains of both proteins have Ca2+-sensitive actin monomer-binding properties, but neither severs filaments nor accelerates polymerization. The N-terminal halves of villin and gelsolin contain all the filament-severing activity of the intact proteins. Severing by gelsolin's N-terminal half is Ca2+-independent, but that of villin has the same Ca2+ requirement as intact villin. The difference in Ca2+ sensitivity extends to 14-kDa N-terminal fragments which bind actin monomers and filament ends, requiring Ca2+ in the case of villin but not gelsolin. Severing of filaments by villin and its N-terminal half is shown to be inhibited by phosphatidylinositol 4,5-bisphosphate, as shown previously for gelsolin (Janmey, P.A., and Stossel, T.P. (1987) Nature 325, 362-364). The functional similarities of villin and gelsolin correlate with known structural features, and the greater functional dependence of villin on Ca2+ compared to gelsolin is traced to differences in their N-terminal domains.  相似文献   

12.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

13.
Cap G (formerly called macrophage capping protein or gCap39) is a member of the gelsolin/villin fanlily of actin-regulatory proteins. Unlike all other members of this family, Cap G caps the barbed ends of actin filaments, but does not sever them. This protein is half the molecular weight and contains half the number of repeat subunits (3 vs 6) of gelsolin and villin, suggesting that these two proteins may have arisen by gene duplication of the Cap G gene. To investigate this possibility we have cloned and sequenced the human Cap G gene (gene symbol CAPG). The gene is 16.6 kb in size, contains 10 exons and 9 introns and is located on the proximal short arm of chromosome 2. The open reading frame is 6.9 kb, having 9 exons and 8 introns. This region contains 3 splice sites that are nearly identical to the human gelsolin gene, but shares only one with villin, indicating that CAPG is more closely related to gelsolin. Further comparisons of these three genes, however, indicate that the evolutionary steps resulting in human gelsolin and villin are likely to have been more complex than a simple tandem duplication of the Cap G gene.  相似文献   

14.
Villin is a calcium-regulated actin-binding protein that caps, severs, and bundles actin filaments in vitro. This 92,500-D protein is a major constituent of the actin bundles within the microvilli of the brush border surface of intestinal and kidney proximal tubule cells. Villin is a very early marker of cells involved in absorption and its expression is highly increased during intestinal cell differentiation. The amino acid sequence deduced from the cDNA sequence revealed that human villin is composed of three domains. The first two domains appear as the result of a duplication: their structural organization is similar. We can then define a basic unit in which a slightly hydrophilic motif is followed by three hydrophobic motifs, similar between themselves and regularly spaced. The duplicated domain is highly homologous to three other actin-severing proteins and this basic structure represents the whole molecule in severin and fragmin, while two basic units compose gelsolin. The third domain which is carboxy terminal is villin specific: it is unique among actin modulating proteins so far known. It could account for its actin-binding properties (dual regulation by calcium of severing and bundling activities). We propose that it may also be related to the subcellular localization of villin in different epithelial cell types.  相似文献   

15.
All proteins of the villin superfamily, which includes the actin-capping and -severing proteins such as gelsolin, scinderin, and severin, are calcium-regulated actin-modifying proteins. Like some of these proteins, villin has morphologically distinct effects on actin assembly depending on the free calcium concentrations. At physiological calcium (Ca2+) villin nucleates and bundles actin, whereas at higher concentrations it caps (>50 microm) and severs (>200 microM) actin filaments. Although Ca(2+)-binding sites have been described in villin, the functional characterization of these sites has not been done previously. In the present study we functionally dissect the calcium-dependent actin-capping and -depolymerizing sites in villin. Our analysis reveals that villin binds Ca2+ with a Kd of 80.5 microM, a stoichiometry of 5.97, and a Hill's coefficient of 1.2. Using the NMR structure of villin 14T and the gelsolin-actin/Ca2+ crystal structure, six putative sites that result in Ca(2+)-induced conformational changes were identified in human villin and confirmed by mutational analysis. Molecular dynamics studies support the mutational analysis and provide a model for structural difference in the A93G mutant that prevents the calcium-induced conformational changes in the S1 domain of villin. Furthermore, we determined that villin expresses at least two types of Ca(2+)-sensitive sites that determine separate functional properties; site 1 (Glu-25, Asp-44, and Glu-74) regulates actin-capping, whereas sites 1 and 2 (Asp-86, Ala-93, and Asp-61), together with the intra-domain calcium-sensitive sites in villin, regulate actin depolymerization by villin. This is the first study that employs sequential mutagenesis to biochemically and functionally characterize the calcium-sensitive sites in villin. Such mutational analysis and functional characterization of the actin-capping and -depolymerizing sites are unknown for other proteins of the villin family.  相似文献   

16.
Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence. Villin has in addition a carboxy-terminal domain, the headpiece, which accounts for its bundling activity. The effects of the villin-deleted mutants were compared with those of native villin. Our results show that essential domains of villin required to induce the growth of microvilli and F-actin redistribution are present in the first half of the core and in the headpiece. We also show that the second half of the villin core cannot be exchanged by its homolog in gelsolin. When expressed at high levels of CV1 cells, full length gelsolin completely disrupted stress fibers without change of the cell shape. Addition of the villin headpiece to gelsolin had no effect on the phenotype induced by gelsolin alone. Expression of the first half of gelsolin induced similar modifications as capping proteins and rapid cell mortality; this deleterious effect on the cell structure was also observed when the headpiece was linked to the first half of gelsolin. In cells expressing the second half of gelsolin, a dotted F-actin staining was often seen. Moreover elongated dorsal F-actin structures were observed when the headpiece was linked to the second gelsolin domain. These studies illustrate the patent in vivo severing activity of gelsolin as well as the distinct functional properties of villin core in contrast to gelsolin.  相似文献   

17.
18.
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.  相似文献   

19.
The polyphosphoinositides phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) inactivate the actin filament-severing proteins villin and gelsolin and dissociate them from monomeric and polymeric actin. A potential polyphosphoinositide- (PPI) binding site of human plasma gelsolin regulating filament severing has been localized to the region between residues 150-169 and to the corresponding region in villin which occurs in the second of six homologous domains present in both proteins. Synthetic peptides based on these sequences bind tightly to both PIP and PIP2, in either micelles or bilayer vesicles, compete with gelsolin for binding to PPIs, and dissociate gelsolin-PIP2 complexes, restoring severing activity to the protein. These peptides also bind with moderate affinity to F-actin, suggesting that inactivation of the severing function of the intact proteins by PPIs results from competition between actin and PPIs for a critical binding site on gelsolin-villin. The PPI-binding peptides contain numerous basic amino acids, but their effects on PPIs are far greater than those of Arg or Lys oligomers, a highly basic peptide derived from the calmodulin-binding site of myristoylated, alanine-rich kinase C substrate protein, or the 5-kDa actin-binding protein thymosin beta-4, suggesting that specific aspects of the primary and secondary structure of these basic peptides are important for their interaction with the acidic headgroups of PPIs. In addition to elucidating the structure of PIP2-binding sites in gelsolin, the results describe a sensitive assay for phosphoinositide-binding molecules based on their ability to prevent inhibition of gelsolin function.  相似文献   

20.
Gelsolin: calcium- and polyphosphoinositide-regulated actin-modulating protein   总被引:15,自引:0,他引:15  
Receptor-mediated stimulation induces massive actin polymerization and cyto-skeletal reorganization. The activity of a potent actin-modulating protein, gelsolin, is regulated both by Ca2+ and polyphos-phoinositides, and it may have a pivotal role in restructuring the actin cytoskeleton in response to agonist stimulation. Structure-function analysis of gelsolin has (1) indicated that its NH2-terminal half is primarily responsible for modulating actin filament length and polymerization; and (2) elucidated mechanisms by which Ca2+ and phospholipids may regulate such functions. Gelsolin is functionally and structurally similar to villin, another Ca2+-activated actin-severing protein found in microvilli, suggesting that gelsolin may be a prototype of this family of actin-modulating proteins. A molecular variant of gelsolin is secreted and may be involved in the clearance of actin filaments released during tissue damage. The two forms of gelsolin are encoded by a single gene, and distinct messages are derived by alternative message splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号