首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cellular senescence is an irreversible growth phase characteristic of normal cells. We have found that human senescent fibroblasts can be induced to undergo programmed cell death (apoptosis) by ceramide, TNF-alpha, or okadaic acid. The most profound effects were induced by TNF-alpha and okadaic acid treatment. In the present study, we also evaluated the contribution of lysosomal activation as a possible mechanism underlying the induction of apoptosis. Four lysosomal enzyme activities were measured: beta-galactosidase, alpha-galactosidase A, beta-glucoronidase, and acid phosphatase. Using an in situ assay, we have found that the activity of beta-galactosidase, which is also a biochemical marker of senescence, is induced in young proliferating fibroblasts following exposure to all three apoptotic inducing agents. The other enzymes were not significantly induced in young fibroblasts following exposure to agents that induce apoptosis. During replicative senescence, three of the four lysosomal enzymes tested (beta-galactosidase, alpha-galactosidase A, and beta-glucoronidase) are constitutively expressed at high levels. TNF-alpha was the only agent that induced lysosomal activity in senescent fibroblasts, of which only alpha-galactosidase A activity was induced. Our studies show that senescent fibroblasts can be induced to undergo apoptosis in a signal-dependent manner. However, the lysosomal enzymes examined do not appear to be correlated with apoptotic induction.  相似文献   

2.
Boyle J  Kill IR  Parris CN 《Aging cell》2005,4(5):247-255
We have examined the relationship between nucleotide excision of the main UV-induced photoproduct, the cyclobutane pyrimidine dimer and in vitro cellular senescence. An in situ semiquantitative immunocytochemical assay has demonstrated that, following a UV-C dose of 15 J m-2, young human dermal fibroblasts maintained in a high level of serum are more efficient than senescent fibroblasts in the removal of dimers. However, in G0-arrested cultures (serum-starved), young fibroblasts are compromised in their ability to remove dimers and are significantly less efficient than senescent cells in this process. Supplementation of the culture medium with 0.1 mm deoxyribonucleosides enhances the removal of dimers in both young and senescent fibroblasts in proliferating or serum-starved cells. These data indicate that overall there is a modest but significant reduction in nucleotide excision of dimer photoproducts in cells as they age in vitro. In addition, G0-arrested young cells exhibit reduced removal of dimers, although this can be complemented by deoxyribonucleoside addition. In addition, this in situ assay has revealed heterogeneity in both susceptibility to UV-C-induced damage and excision. Overall, we provide evidence of reduced UV-induced damage excision in senescent compared with young fibroblasts, and demonstrate modulation of these processes in young and senescent cells under specific growth conditions.  相似文献   

3.
4.
TNF is unusual among the death receptor ligands in being able to induce either apoptotic or necrotic cell death. We have observed that in WEHI 164 fibrosarcoma, cells the mode of TNF-induced cell death is dependent on the stage of the cell cycle. Cells arrested in G(0)/G(1) undergo necrosis, while those progressing through the cell cycle undergo apoptosis. TNF induces caspase activity in both settings, and the broad spectrum caspase inhibitor zVAD-fmk inhibits this activity and blocks both TNF-induced apoptosis and necrosis. Inhibition of oxygen radical accumulation does not block cytotoxicity. The presence and activation of specific caspases were examined by Western blotting. The procaspase-8a isoform was down-regulated in proliferating cells. Procaspases-8b and -7 were cleaved during TNF-induced apoptosis but not necrosis. Thus, a different pattern of caspase expression and activation occurs dependent on the cell cycle and which may determine the mode of cell death.  相似文献   

5.
Previous results of ours have demonstrated that the same clonotype can express both a sensitive and a resistant phenotype to Dex-mediated PCD induction depending on its cell cycle phase. In particular, we demonstrated that human T lymphocytes, arrested in the G0/G1 phase of the cell cycle, are susceptible, while proliferating T cells are resistant to Dex-mediated apoptosis. In this paper, we have further characterized the sensitive and resistant phenotypes and investigated whether a different expression of the apoptotic genes Fas, FasL, Bcl-2, Bcl-x and Bax is involved in the regulation of Dex-mediated apoptosis. The results show that the amount of Bcl-2 expression, that changes during cell cycle phases, determines susceptibility or resistance to apoptosis induced by Dex. In fact, undetectable expression of Bcl-2 in sensitive cells favors Dex-mediated apoptosis while high expression of Bcl-2 in proliferating cells counterbalances apoptosis induction. Moreover, the addition of exogenous IL-2, in the presence of Dex, fails to up-regulate Bcl-2 expression and to revert Dex-mediated apoptotic phenomena.  相似文献   

6.
Infection by a number of Chlamydia species leads to resistance of the host cell to apoptosis, followed by induction of host-cell death. In a population of infected cells that displays protection against staurosporine-induced apoptosis among the adherent cells, we find that cells that had been recovered from the supernatant share characteristics of both apoptosis and necrosis, as assayed by the propidium iodide (PI)-annexin V double-labeling technique. Cell death was observed in both an epithelial cell line and primary fibroblasts, although the primary cells had a higher propensity to die through apoptosis than the immortalized cell line. Staurosporine-mediated activation of the pro-apoptotic BCL-2 family member, BAX, was inhibited in the epithelial cell line infected for 32 h with the lymphogranuloma venereum (LGV/L2) but not the murine pneumonitis (MoPn) strain of C. trachomatis, but inhibition of staurosporine-mediated BAX activation disappeared after 48 h of infection with the LGV/L2 strain. Conversely, infection with MoPn (C. muridarum) but not LGV/L2 led to BAX activation after 72 h, as previously reported for shorter (48 h) infection with the guinea pig inclusion conjunctivitis (GPIC) serovar of C. psittaci (C. caviae). These results suggest that the ability to inhibit staurosporine-mediated BAX activation or to activate BAX due to the infection itself may vary as a function of the chlamydial strain. Interestingly, both the epithelial cells and the fibroblasts also released high mobility group box 1 protein (HMGB1) during infection, although much less HMGB1 was released from fibroblasts, consistent with the higher level of apoptosis observed in the primary cells. HMGB1 is released preferentially by necrotic or permeabilized viable cells, but not apoptotic cells. In the extracellular space, HMGB1 promotes inflammation through interaction with specific cell-surface receptors. Higher levels of HMGB1 were also measured in the genital-tract secretions of mice infected vaginally with C. trachomatis, compared to uninfected controls. These results suggest that cells infected with Chlamydia release intracellular factors that may contribute to the inflammatory response observed in vivo.  相似文献   

7.
Deprivation of growth factors has been shown to induce programmed cell death in many cell types, including mouse 3T3 fibroblasts. Programmed cell death (apoptosis) is an active process of self-destruction which is thought to require the expression of unique genes. Recently, the expression of cell cycle genes such as c-fos and c-myc, and re-entrance to cell cycle traverse, are thought to be necessary to induce programmed cell death. Previous work in this laboratory has shown that statin is a nonproliferation-specific nuclear protein present in the nuclei of young quiescent or senescent human fibroblasts, as well as in growth-arrested mouse 3T3 fibroblasts; we have reported that statin disappears rapidly after the blockage of growth arrest is removed and cells are allowed to resume cell cycle traverse. In this report we address the question of whether cells induced to enter the programmed cell death process also lose the expression of statin. We studied density-arrested quiescent mouse 3T3 cells, which undergo rapid cell death by apoptosis upon serum deprivation. Our results suggest that c-myc expression is induced, as previously reported in other systems of apoptotic death. Interestingly, we also find that statin indeed disappears after the induction of programmed cell death is initiated. These results further support the notion that when apoptosis is induced, cells behave as though released from replication arrest, and experience some part of the G1 phase of the cell cycle. The difference between this event and normal cell cycle traverse is that this experience of the G1 phase in the apoptotic process is an abortive one, with the end result of cell demise. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Fas engagement accelerates liver regeneration after partial hepatectomy   总被引:8,自引:0,他引:8  
Fas (CD95) is a receptor involved in induction of apoptotic cell death of Fas-bearing cells, including hepatocytes and T cells. Injection of Fas-specific antibodies into mice leads to fulminant hepatic failure and death. Fas also transduces growth-promoting signals in proliferating T cells, fibroblasts and some tumor cells. Here we show that partial hepatectomy, which triggers the immediate onset of liver regeneration, protected mice against the lethal effects of Fas-specific antibodies and prevented hepatocyte apoptosis in response to Fas engagement in vivo. Furthermore, Fas engagement accelerated liver regeneration after partial hepatectomy. Liver regeneration kinetics were delayed in mutant mice with decreased cell surface Fas expression (lpr mice). In contrast, regeneration was not delayed in lpr-cg mutant mice, which have a Fas mutation that prevents Fas-induced death but not Fas-dependent proliferative stimulation. Our results indicate that Fas engagement on cells in regenerating or healing tissues may promote cell growth.  相似文献   

9.
10.
11.
Sodium 4-phenylbutyrate (PB) has been used in the therapy of urea cycle defects for many years. Recently, it has been shown to cause cellular differentiation, growth arrest, and apoptosis in certain malignancies. We have analyzed the effects of PB on human lung carcinoma cells. PB has distinct patterns of effects on different lung carcinoma cells, inducing apoptosis in NCI-H460 and NCI-H1792 cells, causing G1 arrest in A549 and SK-LU-1 cells, but having no effect on a non-transformed bronchial epithelial cell line HBE4-E6/E7. We investigated the role of MAP kinase family members, extracellular signal-regulated kinase (ERK), JNK, and p38 mitogen-activated protein kinase (MAPK), as well as other important cell survival signaling molecules in PB-induced apoptosis. We observed activation of JNK and ERK by PB in the lung cancer cells. JNK was activated only in the two apoptotic cells, whereas ERK was activated in both the apoptotic and the growth-arrested cells, demonstrating a correlation between apoptosis and activation of JNK in response to PB. Both JNK inhibitor and JNK RNA interference (RNAi) inhibited PB-induced apoptosis, whereas MEK inhibitor did not, supporting that apoptosis induced by PB is through activation of JNK. De novo protein synthesis is required for the PB-induced JNK activation and induction of apoptosis. However, the production of known upstream activators of JNK, namely Fas/Fas ligand, tumor necrosis factor (TNF)-alpha, TNF-beta, and TRAIL, are not altered by PB treatment. Therefore, PB activates JNK through an unidentified and cell type-specific mechanism. Understanding of this mechanism is of therapeutic value in treating cancer patients with PB.  相似文献   

12.
Maeno E  Takahashi N  Okada Y 《FEBS letters》2006,580(27):6513-6517
Sustained cell shrinkage is a major hallmark of apoptotic cell death. In apoptotic cells, whole cell volume reduction, called apoptotic volume decrease (AVD), proceeds until fragmentation of cells. Under non-apoptotic conditions, human epithelial HeLa cells exhibited a slow regulatory volume increase (RVI) after osmotic shrinkage induced by exposure to hypertonic solution. When AVD was induced by treatment with a Fas ligand, TNF-alpha or staurosporine, however, it was found that HeLa cells failed to undergo RVI. When RVI was inhibited by combined application of Na+/H+ exchanger (NHE) and anion exchanger blockers, hypertonic stress induced prolonged shrinkage followed by caspase-3 activation in HeLa cells. Hypertonicity also induced apoptosis in NHE1-deficient PS120 fibroblasts, which lack the RVI response. When RVI was restored by transfection of these cells with NHE1, hypertonicity-induced apoptosis was completely prevented. Thus, it is concluded that RVI dysfunction is indispensable for the persistence of AVD and induction of apoptosis.  相似文献   

13.
研究发现衰老成纤维细胞抗凋亡. 为探明其机制,检测与凋亡相关的信号传导通路JNK、p38和Akt在细胞衰老过程中是否发生改变.在本研究中,UV被用作JNK和p38传导通路的诱导剂,胎牛血清用作Akt通路的诱导剂.结果表明: p38和Akt在年轻和衰老细胞中均能被相应的诱导剂活化;相反, UV照射却不能有效激活衰老细胞中JNK的活性.结果提示:衰老细胞对凋亡诱导不敏感可能与JNK不能被有效活化有关.  相似文献   

14.
Mortal human fibroblasts can be partially transformed by the bovine papillomavirus E5 oncoprotein through activation of the platelet-derived growth factor beta receptor. Here, we report that these cells undergo massive apoptosis 2 weeks after confluence. Although activation of caspase 3 was observed in the apoptotic cells, it was not required for apoptosis. The appearance of the mitochondrial proteins cytochrome c and apoptosis-inducing factor in cytosolic and nuclear compartments, respectively, provided a basis for mitochondrial dysfunction and a caspase-independent mechanism of apoptosis in these cells. Although an activating conformational change in Bax also was evident in the apoptotic cells, enforced overexpression of Bcl-2 was insufficient to prevent apoptosis. Finally, a small peptide present in the conditioned medium from dying transformed cells appeared responsible for inducing apoptosis through affecting a conformational change in Bax and eventual relocalization of apoptosis-inducing factor to the nucleus. Thus, an atypical apoptotic pathway is activated in mortal human fibroblasts in response to transformation induced by sustained receptor tyrosine kinase activation.  相似文献   

15.
Cancer cell sensitization to fas-mediated apoptosis by sodium butyrate   总被引:9,自引:0,他引:9  
Cancer cells often resist Fas-mediated apoptosis even when the Fas receptor is expressed at the cell surface. We show here that human and rat colon cancer cells undergo massive apoptosis when they are exposed to soluble Fas ligand in the presence of sodium butyrate, an agent that induces by itself only a low rate of apoptosis. Sodium butyrate potentiates Fas-dependent apoptosis in seven out of eight colon cancer cell lines. Sodium butyrate does not increase Fas receptor cell surface expression and does not modify cell levels of Bcl-2, Bcl-xL, Bcl-xS and Bax. Sodium butyrate also induces tumor cell sensitization to the apoptotic effect of the combination of TNF-alpha and IFN-gamma, but it does not modify the level of the FADD/Mort1 adaptator molecule, at the connection between Fas- and TNF-dependent apoptosis pathways. Because the clinical toxicity of butyrate is low, its ability to enhance Fas-signal delivery in cancer cells could be of therapeutic interest.  相似文献   

16.
17.
On staining with a monoclonal antibody raised against microtubule-associated protein-1 (MAP-1), dot-like structures were seen in the nuclei of interphase cells, but not in those of non-cycling G0-arrested cells. Dots were also not seen in the nuclei of non-cycling senescent human cells (IMR-90). A SV40-DNA-transformed subline of IMR-90 with a limited growth potential showed progressive decrease of cells with nuclei containing dots in the final stage of their lifespan. The dots appeared in G0-arrested IMR-90 cells when these cells were incubated in medium of high osmotic pressure for 3 min. In contrast, no dots appeared in senescent cells or X-ray-irradiated young cells when they were incubated in medium of high osmotic pressure. Thus irreversibly non-cycling cells could be distinguished from G0-phase cells on the level of whole cultures. The results suggest that senescent cells lose their division potential by entering an irreversible cell-cycle stage differing from G0.  相似文献   

18.
19.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

20.
Activation-induced cell death (AICD) is a regulatory mechanism eliminating excess activated T cells, mainly through a Fas/Fas ligand-dependent mechanism. The goal of this study was to determine whether mouse primary lung fibroblasts are capable of modulating AICD. Using T cell hybridoma DO11.10, we found that fibroblasts in coculture rescue T cells from AICD. Fibroblast-conditioned medium (FCM) also inhibited apoptosis of T cells activated with immobilized anti-CD3 antibody. The effects of lung fibroblasts are mediated, in part, by secreted prostaglandin E(2) (PGE(2)) because treatment of fibroblasts with indomethacin decreased antiapoptotic activity of FCM. Addition of exogenous PGE(2) to FCM from fibroblast cultures treated with indomethacin restored the inhibitory activity of FCM. Expression of Fas receptor and Fas ligand by anti-CD3-activated DO11.10 cells was not affected by PGE(2). However, the same concentrations of PGE(2) significantly downregulated activation of caspase-8 and caspase-3. These results demonstrate that lung fibroblasts inhibit the AICD of T cells by secreting PGE(2), which downregulates caspase activation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号