首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.

Background  

The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis.  相似文献   

2.
Variegated plants have green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors contain non-pigmented plastids that lack organized lamellar structures. Many variegations are caused by mutations in nuclear genes that affect plastid function, yet in only a few cases have the responsible genes been cloned. We show that mutations in the nuclear VAR2 locus of Arabidopsis cause variegation due to loss of a chloroplast thylakoid membrane protein that bears similarity to the FtsH family of AAA proteins (ATPases associated with diverse cellular activities). Escherichia coli FtsH is a chaperone metalloprotease that functions in a number of diverse membrane-associated events. Although FtsH homologs have been identified in multicellular organisms, their functions and activities are largely unknown; we provide genetic in vivo evidence that VAR2 functions in thylakoid membrane biogenesis. We have isolated four var2 alleles and they have allowed us to define domains of the protein that are required for activity. These include two putative ATP-binding sites. VAR2 protein amounts generally correlate with the severity of the var2 mutant phenotype. One allele lacks detectable VAR2 protein, suggesting that the mechanism of var2 variegation involves the action of a redundant activity in the green sectors. We conclude that redundant activities may be a general mechanism to explain nuclear gene-induced plant variegations.  相似文献   

3.
Liu X  Yu F  Rodermel S 《Plant physiology》2010,154(4):1588-1601
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant has green- and white-sectored leaves due to loss of VAR2, a subunit of the chloroplast FtsH protease/chaperone complex. Suppressor screens are a valuable tool to gain insight into VAR2 function and the mechanism of var2 variegation. Here, we report the molecular characterization of 004-003, a line in which var2 variegation is suppressed. We found that the suppression phenotype in this line is caused by lack of a chloroplast pentatricopeptide repeat (PPR) protein that we named SUPPRESSOR OF VARIEGATION7 (SVR7). PPR proteins contain tandemly repeated PPR motifs that bind specific RNAs, and they are thought to be central regulators of chloroplast and mitochondrial nucleic acid metabolism in plants. The svr7 mutant has defects in chloroplast ribosomal RNA (rRNA) processing that are different from those in other svr mutants, and these defects are correlated with reductions in the accumulation of some chloroplast proteins, directly or indirectly. We also found that whereas var2 displays a leaf variegation phenotype at 22°C, it has a pronounced chlorosis phenotype at 8°C that is correlated with defects in chloroplast rRNA processing and a drastic reduction in chloroplast protein accumulation. Surprisingly, the cold-induced phenotype of var2 cannot be suppressed by svr7. Our results strengthen the previously established linkage between var2 variegation and chloroplast rRNA processing/chloroplast translation, and they also point toward the possibility that VAR2 mediates different activities in chloroplast biogenesis at normal and chilling temperatures.  相似文献   

4.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mutation fu-gaeri1 (fug1) that suppressed leaf variegation of var2. Map-based cloning and subsequent characterization of the FUG1 locus demonstrated that it encodes a protein homologous to prokaryotic translation initiation factor 2 (cpIF2) located in chloroplasts. We show evidence that cpIF2 indeed functions in chloroplast protein synthesis in vivo. Suppression of leaf variegation by fug1 is observed not only in var2 but also in var1 (lacking FtsH5) and var1 var2. Thus, suppression of leaf variegation caused by loss of FtsHs is most likely attributed to reduced protein synthesis in chloroplasts. This hypothesis was further supported by the observation that another viable mutation in chloroplast translation elongation factor G also suppresses leaf variegation in var2. We propose that the balance between protein synthesis and degradation is one of the determining factors leading to the variegated phenotype in Arabidopsis leaves.  相似文献   

5.
Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique...  相似文献   

6.
Yu F  Liu X  Alsheikh M  Park S  Rodermel S 《The Plant cell》2008,20(7):1786-1804
The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.  相似文献   

7.
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.  相似文献   

8.
9.
FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.  相似文献   

10.
11.
Variegation mutants are ideal model systems to study chloroplast biogenesis.We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes.In this review,we focus on the Arabidopsis var2 variegation mutant,and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation.VAR2 is a subunit of the chloroplast FtsH complex,which is involved in turnover of the Photosystem Ⅱ reaction center D1 protein,as well as in other processes required for the development and maintenance of the photosynthetic apparatus.The cells in green sectors of var2have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lameliae.To explain the mechanism of var2 variegation,we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2.To gain insight into these activities,second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes.Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression,including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

12.
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

13.
Site-specific mutations in the quinone binding sites of the photosynthetic reaction center (RC) protein complexes of Rhodobacter (R.) capsulatus caused pronounced effects on sequential electron transfer. Conserved residues that break the twofold symmetry in this region of the RC – M246Ala and M247Ala in the QA binding pocket, and L212Glu and L213Asp in the QB binding pocket – were targeted. We constructed a QB-site mutant, L212Glu-L213Asp Ala-Ala, and a QA-site mutant, M246Ala–M247Ala Glu-Asp, to partially balance the differences in charge distribution normally found between the two quinone binding sites. In addition, two photocompetent revertants were isolated from the photosynthetically-incompetent M246Glu-M247Asp mutant: M246Ala–M247Asp and M246Gly–M247Asp. Sequential electron transfer was investigated by continuous light excitation and time-resolved electron paramagnetic resonance (EPR), and time-resolved optical techniques. Several lines of EPR evidence suggested that the forward electron transfer rate to QA, kQ, was slowed in those strains containing altered QA sites. The slower rates of secondary electron transfer were confirmed by time-resolved optical results with the M246Glu-M247Asp mutations in the QA site resulting in a dramatically lowered secondary electron transfer efficiency [kQ < (2 ns)-1] in comparison with either the native R. capsulatus RC or the QB site mutant [kQ (200 ps)-1]. Secondary electron transfer in the two revertants was intermediate between that of the native RC and the QA mutant. The P+ QA- PQA charge recombination rates were also changed in the strains that carried altered QA sites. We show that local mutations in the QA site, presumably through local electrostatic changes, significantly alter binding and electron transfer properties of QA.  相似文献   

14.
Summary Dominant suppressor mutations for position-effect variegation have been isolated by using a strongly variegated line carrying the w m4 chromosome (w m4h) and the dominant enhancer mutant En(var)c 101. The use of an effective genetic test system made it possible to isolate more than 100 strongly dominant suppressor mutations for position-effect variegation. This suggests that the phenomenon of position-effect variegation is characterised by a complex genetic basis. The significance of the isolated mutants to genetic dissection of structural and regulatory functions of the eukaryotic chromosome is discussed.  相似文献   

15.
Arabidopsis yellow variegated1 (VAR1) and VAR2 are separate loci that encode similar chloroplast FtsH proteases. To date, FtsH is the best-characterized protease in thylakoid membranes involved in the turnover of photosynthetic protein complexes. It comprises a protein family that is encoded by 12 different nuclear genes in Arabidopsis. We show here that nine FtsH proteins are located in the chloroplasts. Mutations in either VAR1 or VAR2 cause typical leaf variegation and sensitivity to photoinhibition. By contrast, none of these phenotypes was observed in T-DNA insertion mutants in other ftsH genes (ftsh1, ftsh6, and ftsh8) closely related to VAR1 and VAR2. This finding suggests that VAR1 and VAR2 play a predominant role in the photosystem II repair cycle in thylakoid membranes. By generating VAR1- and VAR2-specific antibodies, we found that loss of either VAR1 or VAR2 results in the decreased accumulation of the other. Thus, the genetic nonredundancy between VAR1 and VAR2 could be attributed to their coordinated regulation at the protein level. These observations led us to examine whether VAR1 and VAR2 form a complex. Sucrose density gradient and gel filtration analyses revealed a complex of approximately 400 to 450 kD, probably representing a hexamer. Furthermore, VAR1 and VAR2 were shown to coprecipitate by immunoprecipitation using VAR1- and VAR2-specific antibodies. The majority of VAR1 appears to exist as heterocomplexes with VAR2, whereas VAR2 may be present as homocomplexes as well. Based on these results, we conclude that VAR1 and VAR2 are the major components of an FtsH complex involved in the repair of photodamaged proteins in thylakoid membranes.  相似文献   

16.
17.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

18.
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes.  相似文献   

19.
We hypothesized that chloroplast energy imbalance sensed through alterations in the redox state of the photosynthetic electron transport chain, measured as excitation pressure, governs the extent of variegation in the immutans mutant of Arabidopsis thaliana. To test this hypothesis, we developed a nondestructive imaging technique and used it to quantify the extent of variegation in vivo as a function of growth temperature and irradiance. The extent of variegation was positively correlated (R2 = 0.750) with an increase in excitation pressure irrespective of whether high light, low temperature, or continuous illumination was used to induce increased excitation pressure. Similar trends were observed with the variegated mutants spotty, var1, and var2. Measurements of greening of etiolated wild-type and immutans cotyledons indicated that the absence of IMMUTANS increased excitation pressure twofold during the first 6 to 12 h of greening, which led to impaired biogenesis of thylakoid membranes. In contrast with IMMUTANS, the expression of its mitochondrial analog, AOX1a, was transiently upregulated in the wild type but permanently upregulated in immutans, indicating that the effects of excitation pressure during greening were also detectable in mitochondria. We conclude that mutations involving components of the photosynthetic electron transport chain, such as those present in immutans, spotty, var1, and var2, predispose Arabidopsis chloroplasts to photooxidation under high excitation pressure, resulting in the variegated phenotype.  相似文献   

20.
The dominant suppressor Su(var)b 101 and the dominant enhancer En(var)c 101 were found to affect significantly white variegation in a strongly variegating line of the w m4 chromosome (w m4h ) which has been used as standard rearrangement for a genetic dissection of position-effect variegation (Reuter and Wolff, 1981). Both mutations were also shown to affect position-effect heterochromatisation in T(1;4)w m258-21 and variegation in all the rearrangements tested (white, brown, scute and bobbed variegation). These results suggest that the genes identified encode functions essential for the manifestation of gene inactivation in position-effect rearrangements. It seems also reasonable to assume that in all the rearrangements tested identical heterochromatisation processes lead to inactivation of the genes whose phenotype is variegated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号