首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Yu F  Park S  Rodermel SR 《Plant physiology》2005,138(4):1957-1966
FtsH is an ATP-dependent metalloprotease found in bacteria, mitochondria, and plastids. Arabidopsis (Arabidopsis thaliana) contains 12 AtFtsH proteins, three in the mitochondrion and nine in the chloroplast. Four of the chloroplast FtsH proteins are encoded by paired members of closely related genes (AtFtsH1 and 5, and AtFtsH2 and 8). We have previously reported that AtFtsH2 and 8 are interchangeable components of AtFtsH complexes in the thylakoid membrane. In this article, we show that the var1 variegation mutant, which is defective in AtFtsH5, has a coordinate reduction in the AtFtsH2 and 8 pair, and that the levels of both pairs are restored to normal in var1 plants that overexpress AtFtsH1. Overexpression of AtFtsH1, but not AtFtsH2/VAR2, normalizes the pattern of var1 variegation, restoring a nonvariegated phenotype. We conclude that AtFtsH proteins within a pair, but not between pairs, are interchangeable and functionally redundant, at least in part. We further propose that the abundance of each pair is matched with that of the other pair, with excess subunits being turned over. The variegation phenotype of var1 (as well as var2, which is defective in AtFtsH2) suggests that a threshold concentration of subunits is required for normal chloroplast function. AtFtsH1, 2, 5, and 8 do not show evidence of tissue or developmental specific expression. Phylogenetic analyses revealed that rice (Oryza sativa) and Arabidopsis share a conserved core of seven FtsH subunit genes, including the AtFtsH1 and 5 and AtFtsH2 and 8 pairs, and that the structure of the present-day gene families can be explained by duplication events in each species following the monocot/dicot divergence.  相似文献   

2.
Plant variegations are characterized by the presence of white sectors in normally green tissues and organs. Whereas the white sectors contain defective plastids that lack coloured pigments, the green sectors contain morphologically normal chloroplasts. Variegation mutants are defective in chloroplast developmental processes and arise due to mutations in nuclear or organellar genes. Despite their widespread occurrence in nature, only a few variegations have been studied at the molecular level. In this review, recent progress toward understanding two Arabidopsis variegations, immutans (im) and var2 is summarized. Both im and var2 are caused by nuclear recessive mutations and the responsible genes have been cloned and characterized. IMMUTANS functions as a chloroplast terminal oxidase that transfers electrons from the plastoquinol pool to oxygen. It appears to be a versatile electron sink, especially early in chloroplast development, when its function is crucial for carotenoid biosynthesis, and in excess light, when it serves as a 'safety valve'. IM also probably functions in chlororespiration. VAR2 encodes a chloroplast FtsH metalloprotease (termed AtFtsH2). Along with other AtFtsH proteins (AtFtsH1, 5 and 8), it forms complexes in the thylakoid membrane that are probably involved in the process of PSII repair during photoinhibition. A model has been proposed to explain the mechanism of var2 variegation, which suggests that threshold levels of FtsH complexes are required for green sector formation. It is concluded that studies on im and var2 have provided novel insights into nuclear-chloroplast interactions and, especially, into mechanisms of photoprotection.  相似文献   

3.
Variegation mutants are ideal model systems to study chloroplast biogenesis.We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes.In this review,we focus on the Arabidopsis var2 variegation mutant,and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation.VAR2 is a subunit of the chloroplast FtsH complex,which is involved in turnover of the Photosystem Ⅱ reaction center D1 protein,as well as in other processes required for the development and maintenance of the photosynthetic apparatus.The cells in green sectors of var2have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lameliae.To explain the mechanism of var2 variegation,we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2.To gain insight into these activities,second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes.Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression,including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

4.
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

5.
Variegated plants have green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors contain non-pigmented plastids that lack organized lamellar structures. Many variegations are caused by mutations in nuclear genes that affect plastid function, yet in only a few cases have the responsible genes been cloned. We show that mutations in the nuclear VAR2 locus of Arabidopsis cause variegation due to loss of a chloroplast thylakoid membrane protein that bears similarity to the FtsH family of AAA proteins (ATPases associated with diverse cellular activities). Escherichia coli FtsH is a chaperone metalloprotease that functions in a number of diverse membrane-associated events. Although FtsH homologs have been identified in multicellular organisms, their functions and activities are largely unknown; we provide genetic in vivo evidence that VAR2 functions in thylakoid membrane biogenesis. We have isolated four var2 alleles and they have allowed us to define domains of the protein that are required for activity. These include two putative ATP-binding sites. VAR2 protein amounts generally correlate with the severity of the var2 mutant phenotype. One allele lacks detectable VAR2 protein, suggesting that the mechanism of var2 variegation involves the action of a redundant activity in the green sectors. We conclude that redundant activities may be a general mechanism to explain nuclear gene-induced plant variegations.  相似文献   

6.
Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique...  相似文献   

7.
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.  相似文献   

8.
Variegation mutants and mechanisms of chloroplast biogenesis   总被引:6,自引:0,他引:6  
Variegated plants typically have green‐ and white‐sectored leaves. Cells in the green sectors contain normal‐appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.  相似文献   

9.
Liu X  Yu F  Rodermel S 《Plant physiology》2010,154(4):1588-1601
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant has green- and white-sectored leaves due to loss of VAR2, a subunit of the chloroplast FtsH protease/chaperone complex. Suppressor screens are a valuable tool to gain insight into VAR2 function and the mechanism of var2 variegation. Here, we report the molecular characterization of 004-003, a line in which var2 variegation is suppressed. We found that the suppression phenotype in this line is caused by lack of a chloroplast pentatricopeptide repeat (PPR) protein that we named SUPPRESSOR OF VARIEGATION7 (SVR7). PPR proteins contain tandemly repeated PPR motifs that bind specific RNAs, and they are thought to be central regulators of chloroplast and mitochondrial nucleic acid metabolism in plants. The svr7 mutant has defects in chloroplast ribosomal RNA (rRNA) processing that are different from those in other svr mutants, and these defects are correlated with reductions in the accumulation of some chloroplast proteins, directly or indirectly. We also found that whereas var2 displays a leaf variegation phenotype at 22°C, it has a pronounced chlorosis phenotype at 8°C that is correlated with defects in chloroplast rRNA processing and a drastic reduction in chloroplast protein accumulation. Surprisingly, the cold-induced phenotype of var2 cannot be suppressed by svr7. Our results strengthen the previously established linkage between var2 variegation and chloroplast rRNA processing/chloroplast translation, and they also point toward the possibility that VAR2 mediates different activities in chloroplast biogenesis at normal and chilling temperatures.  相似文献   

10.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mutation fu-gaeri1 (fug1) that suppressed leaf variegation of var2. Map-based cloning and subsequent characterization of the FUG1 locus demonstrated that it encodes a protein homologous to prokaryotic translation initiation factor 2 (cpIF2) located in chloroplasts. We show evidence that cpIF2 indeed functions in chloroplast protein synthesis in vivo. Suppression of leaf variegation by fug1 is observed not only in var2 but also in var1 (lacking FtsH5) and var1 var2. Thus, suppression of leaf variegation caused by loss of FtsHs is most likely attributed to reduced protein synthesis in chloroplasts. This hypothesis was further supported by the observation that another viable mutation in chloroplast translation elongation factor G also suppresses leaf variegation in var2. We propose that the balance between protein synthesis and degradation is one of the determining factors leading to the variegated phenotype in Arabidopsis leaves.  相似文献   

11.
Yu F  Liu X  Alsheikh M  Park S  Rodermel S 《The Plant cell》2008,20(7):1786-1804
The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.  相似文献   

12.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   

13.

Background  

The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis.  相似文献   

14.
FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.  相似文献   

15.
16.
Epp MD 《Genetics》1973,75(3):465-483
A nuclear gene mutation in Oenothera hookeri increases the frequency of variegated sectors. The gene is recessive; the variegation is cytoplasmically transmitted. Once variegation is induced, the mutant gene is not required for its continued expression. The induced sectors may differ one from another. The gene expresses unique patterns of penetrance and of maternal effect. The genetic data implicate the chloroplasts as the site for the expression of variegation. The chloroplasts of O. parviflora are also subject to the action of the nuclear gene. Possible mechanisms by which a gene might cause chloroplasts to mutate are discussed.  相似文献   

17.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

18.
Control of chloroplast redox by the IMMUTANS terminal oxidase   总被引:9,自引:0,他引:9  
Variegation mutants offer excellent opportunities to study interactions between the nucleus-cytoplasm, the chloroplast, and the mitochondrion. Variegation in the immutans ( im ) mutant of Arabidopsis is induced by a nuclear recessive gene and the extent of variegation can be modulated by light and temperature. Whereas the green sectors have morphologically normal chloroplasts, the white sectors are devoid of pigments and accumulate a colourless carotenoid, phytoene. The green sectors are hypothesized to arise from cells that have avoided irreversible photooxidative damage whereas the white sectors originate from cells that are photooxidized. Cloning of the IMMUTANS ( IM ) gene has revealed that IMMUTANS (IM) is a plastid homologue of the mitochondrial alternative oxidase. This finding suggested a model in which IM functions as a redox component of the phytoene desaturation pathway, which requires phytoene desaturase activity. Consistent with this idea, IM has quinol oxidase activity in vitro. Recent studies have revealed that IM plays a more global role in plastid metabolism. For example, it appears to be the elusive terminal oxidase of chlororespiration and also functions as a light stress protein.  相似文献   

19.
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号