首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to assess the effects of environmental temperature and humidity on the quality and developmental capabilities of bovine oocytes. In Experiment 1, Bos taurus (Holstein and crossbred Angus) cows were subjected to 5 weekly sessions of ultrasound-guided follicle aspiration from February 16 through March 23 (cool season) and 5 sessions from May 22 through June 20 (hot season). In Experiment 2, Bos taurus (Holstein) and Bos indicus (Brahman) cows were superstimulated (Super-Ov) during the months of August (hot season) or January (cool season), and each cow was subjected to a single oocyte aspiration session. In each experiment, oocytes were classified as normal or abnormal based on ooplasm morphology and cumulus cell layers. In Experiment 1, oocytes classified as normal were in vitro matured and fertilized (IVM/IVF), and the resulting embryos cultured for 8 d. All oocytes recovered from superstimulated cows in Experiment 2 were matured and fertilized in vitro and the subsequent embryos cultured for 8 d, regardless of their morphological appearance. In Experiment 1, Bos taurus cows produced a higher (P = 0.02) percentage of normal oocytes during the cool season (75.9 +/- 8.0) than during the hot season (41.0 +/- 9.5). The percentage of fertilized oocytes developing to the 2-cell (82.4), 8-cell (65.4) and morula (46.6) stages were also greater (P < or = 0.06) during the cool season than the hot season (45.0, 21.2, 6.0 for 2-cell, 8-cell and morula stages, respectively). In Experiment 2, Bos taurus cows (Holstein) had a lower (P = 0.01) percentage of normal oocytes in the hot season (24.5 vs 80.0) and a lower (P < or = 0.003) percentage of fertilized oocytes developing to the 8-cell, morula and blastocyst stages. No difference (P > or = 0.57) in the percentage of normal oocytes or in embryo development was detected between seasons in Bos indicus (Brahman) cows. In conclusion, high environmental temperature and humidity resulted in a marked decline in the quality of oocytes retrieved from Bos taurus cows and markedly decreased their in vitro developmental capabilities. In contrast, a high percentage of oocytes retrieved from Bos indicus cows exhibited normal morphology and yielded a high proportion of blastocysts, regardless of season.  相似文献   

2.
Heat stress has negative effects on pregnancy rates of lactating dairy cattle. There are genetic differences in tolerance to heat stress; Bos taurus indicus (B. t. indicus) cattle and embryos are more thermotolerant than Bos taurus taurus (B. t. taurus). In the present study, the effects of sire and sire breed on conception and embryonic/fetal loss rates of lactating Holstein cows during the Brazilian summer were determined. In Experiment 1, cows (n=302) were AI after estrus detection or at a fixed-time with semen from one Gyr (B. t. indicus) or one Holstein sire (B. t. taurus). Pregnancy was diagnosed 80 days after AI. In Experiment 2, cows (n=811) were AI with semen from three Gyr and two Holstein sires. Pregnancy was diagnosed at 30-40 and at 60-80 days after AI. Cows diagnosed pregnant at the first examination but non-pregnant at the second were considered as having lost their embryo or fetus. Data were analyzed by logistic regression. The model considered the effect of sire within breed, sire breed, days postpartum, period of lactation, and AI type (AI after estrus versus fixed-time). There was no effect of the AI type, days postpartum or milk production on conception or embryonic loss rates. The use of Gyr bulls increased pregnancy rate when compared to Holstein bulls [9.1% (60/657) versus 5.0% (23/456), respectively, P=0.008; data from Experiments 1 and 2 combined]. Additionally, in Experiment 2, cows inseminated using semen from sire #4 (Gyr) had lower embryonic loss (10%) when compared with other B. t. indicus (35.3% and 40%) or B. t. taurus sires (18.2% and 38.5%, P=0.03). In conclusion, the use of B. t. indicus sires may result in higher conception rates in lactating Holstein cows during summer heat stress. Moreover, sire can affect embryonic loss and selection of bulls according to this criterion may result in higher parturition rates in lactating Holstein cows.  相似文献   

3.
This study was designed to determine the possibility of using F1 crossbreed cattle (Holstein x Zebu) as donors of oocytes for in vitro fertilization (IVF) and for pronuclear gene microinjection into in vitro-produced embryos. In the first part of the experiment oocytes from Bos taurus (Holstein), Bos indicus (Zebu) and F1 crossbred Bos taurus x Bos indicus (Holstein x Zebu) genotypes were inseminated with Bos taurus (Holstein) semen and were allocated for in vitro embryo production using conventional IVF procedures. No differences were observed on the in vitro maturation (IVM) rates between breeds (Holstein x Holstein:85%, Zebu x Holstein:84% and Zebu x Holstein x Holstein:88%). Holstein cows yielded the highest number of cumulus oocyte complexes (6.8 per ovary) for in vitro maturation, differing (P<0.05) from Zebu x Holstein and Zebu x Holstein x Holstein F1 by 5.1 and 5.8, respectively. However, the Holstein breed also yielded the lowest percentage of cleavage (45.1 vs 71.9% for Zebu x Holstein and 65.1% for Zebu x Holstein x Holstein). Of the 3 genotypes, the hybrid F1 breed was the most efficient source of oocytes for the production of embryos capable of reaching morulae and blastocyst stages (76 250 ; P< 0.001). In the second part of the study, 599 oocytes from the F1 breed were fertilized in vitro, 1 group of 150 oocytes was used for the determination of the optimal pronuclear visualization period. The highest number of oocytes with 2 pronuclei was observed between 24 to 28 h after IVF (27 to 42%). The remaining 399 oocytes were microinjected with a gene construct bearing the bacterial lacZ gene as the reporter for gene expression. Survival of embryos to microinjection was 73.8%, and 45.5% of them (50 110 ) cleaved in culture. Of the microinjected embryos, 1 out of 50 showed beta-galactosidase activity. These findings indicate that a tropical crossbreed of cattle (Zebu x Holstein x Holstein) can be used as a source of oocytes for IVF programs and gene microinjection studies.  相似文献   

4.
In vitro studies have shown that Bos taurus indicus (B. t. indicus) embryos submitted to heat shock at early stages of development are better able to survive as compared to Bos taurus taurus embryos. Embryo genotype influences resistance to heat shock thus leading to the question as to whether embryos sired by thermo-tolerant breeds exhibit the same resistance to heat shock. In the present study the influence of both oocyte and semen, on the resistance to heat shock (HS) at early stages of in vitro development, was assessed in B. t. indicus [Nelore (N) breed], B. t. taurus [Holstein (H) and Angus (A) breeds] and crossbreds. In Experiment 1, Nelore and crossbred oocytes were collected from slaughterhouse ovaries and fertilized with spermatozoa from Nelore and Angus bulls. Presumptive embryos were collected and randomly assigned to control (39 degrees C) or HS at 12, 48 or 96 h post insemination (hpi; 41 degrees C for 12h) treatments. The cleavage rates and proportion of embryos developing to the blastocyst and hatched blastocyst stages were recorded on Days 2, 8 and 10, respectively. Heat shock treatment decreased development of both Nelore and crossbred embryos. There was a significant interaction between time (12, 48 or 96 hpi) and temperature for blastocyst rates, i.e., the embryos became more thermotolerant as development proceeded. In Experiment 2, oocytes from Nelore and Holstein cows were fertilized with semen from bulls of either Nelore or Angus breeds, and subjected to 12 h HS at 96 hpi. Heat shock at 96 hpi, decreased embryo development. Additionally, cowxtreatment and bullxtreatment interactions were significant for blastocyst rates, i.e., both breed of cow and breed of bull affected the decline in blastocyst rate caused by heat shock treatment. In conclusion, the present results indicate that Nelore embryos (indicus) are more resistant to heat shock than Holstein (taurus) at early stages of in vitro development, and that embryos become more thermo-tolerant as development proceeds. Additionally, the resistance to heat shock was a result of the genetic contribution from both oocyte and spermatozoa.  相似文献   

5.
In vitro embryo production and exploitation of heterosis are two methods of increasing productivity and accelerating genetic progress in many cattle production systems. However, it is not known if heterosis exists in bovine embryos produced in vitro. Tests for heterosis in in vitro embryo production were conducted in two experiments using reciprocal crosses. In the first, gametes from Bos taurus and Bos indicus were used; in the second, gametes from dairy and beef breeds of Bos taurus were used. In each experiment, both parental groups were used as sperm and oocyte donors, producing crossbred and purebred embryos. Oocytes obtained from abattoir-derived ovaries underwent in vitro maturation and in vitro fertilization with frozen semen. Embryos were cultured to blastocyst stage and observed. In the first experiment, higher (P < 0.05) rates of blastocyst formation were found for Bos taurus both as sires and as dams. Approximately 36% of the purebred Bos taurus oocytes and 21% of the purebred Bos indicus oocytes developed to blastocyst. Crosses averaged 16% resulting in a heterosis estimate of 45%. Ovaries from Bos indicus cows had more harvestable oocytes than did those from Bos taurus cows (P < 0.05). No evidence for heterosis was found for crosses within Bos taurus. Oocytes from beef cows had a higher rate of blastocyst formation than did those from dairy cows (30 vs. 24%, P < 0.05). These seemingly disparate results concerning heterosis were discussed in light of the period of genetic isolation of the parental populations in the two experiments.  相似文献   

6.
In the present study, we tested the hypothesis that Bos taurus taurus bulls have greater reactive oxygen species (ROS) and lower activity of antioxidant enzymes in their semen than Bos taurus indicus bulls. Sixteen Simmental bulls (B. t. taurus) and 11 Nelore bulls (B. t. indicus) were managed extensively in a tropical environment. Semen was collected twice annually (summer and winter) for 2 consecutive years. Simmental bulls had significantly higher percentages of major sperm defects during the summer than the winter (20.3+/-3.1% versus 12.2+/-2.4%, respectively; mean+/-S.E.M.). There was an interaction of breed and season for minor sperm defects (P=0.037; highest in Nelore bulls in the summer) and an effect of season on total defects (P=0.066; higher in summer). To evaluate oxidative damage, malondialdehyde (lipid-peroxidation metabolite) concentrations were indirectly measured by semen concentrations of thiobarbituric acid reactive substances (TBARS); these were higher in summer than in winter (728.1+/-79.3ng/mL versus 423.8+/-72.6ng/mL, respectively; P=0.01). Glutathione peroxidase/redutase (GPx) activity in semen was higher in Simmental versus Nelore bulls (741.6+/-62.1 versus 510.2+/-62.8; P<0.01). However, superoxide dismutase (SOD), another antioxidant enzyme, was not significantly affected by breed or season. There were correlations between TBARS and sperm primary defects during the summer for both Simmental and Nelore bulls (r=0.59, P=0.021 and r=0.40, P=0.034, respectively), and between SOD and primary defects during summer for Simmental bulls only (r=-0.51, P=0.041). In conclusion, there was a higher level of lipid peroxidation (ROS) in semen of Simmental versus Nelore bulls; apparently the higher GPx activity in Simmental bulls was insufficient to avoid damage that occurred concurrent with increased ROS production during the summer.  相似文献   

7.
Weights of the gravid uterus and fetus as well as the fetal measurements were determined at slaughter for 107 Bos taurus cows grazed on improved pastures and for 70 Bos indicus cows grazed on native pastures in northern Australia. The stage of gestation was assessed from palpation per rectum in early-to-mid gestation and at slaughter and from fetal development characteristics at slaughter. The age and breed of the cow and the sex of the fetus did not significantly affect any of the uterine components or fetal measurements. Growth curves had dominant, positive linear components but negative quadratic ones, which improved the fit, particularly for the later stages of gestation. Uterine components and fetal measurements were highly correlated (0.94 to 0.99). For Bos taurus cows, there were higher estimates at birth for weights of the gravid uterus and the fetus, but estimates for other fetal measurements were similar to those for Bos indicus cows. Major fetal growth occurred during the third trimester, with the length of the foreleg tending to change relatively slowly and the head width quite fast during the first trimester. Correction factors for cow liveweight to adjust to commonality for non-pregnancy were 5, 7, 10, 14, 20, 29, 43 and 65 kg for Bos taurus and 2, 4, 6, 10, 15, 23, 35 and 51 kg for Bos indicus at 2 to 9 months of gestation.  相似文献   

8.
Embryos from Bos indicus are more resistant to elevated culture temperature (i.e. heat shock) than embryos from some Bos taurus breeds. The present experiment was designed to determine if Brahman embryos have greater resistance to heat shock than Holstein embryos at a stage in development before the embryonic genome was fully activated. A second objective was to test breed effects on estrus synchronization and superovulation responses. A total of 29 Brahman and 24 Holstein cows were subjected to estrus synchronization using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF2alpha) superovulation. Embryos were collected at 48 h and day 5 after insemination. There was a tendency for a lower proportion of Brahmans to be detected in standing estrus than Holsteins. There were no differences between breeds in the proportion of cows detected in estrus using both tailpaint and standing estrus as criteria or in interval from PGF2alpha to estrus. The degree of synchrony in estrus was greater for Brahmans. Superovulation response was generally similar between breeds. At 48 h after insemination, there was a tendency for a greater proportion of Brahman oocytes to have undergone cleavage. Uncleaved oocytes were cultured for an additional 24 h-at this time, cleavage rate was similar between breeds. When embryos reached the 2-4-cell stage, they were heat-shocked for 4.5 h at 41 degrees C. This heat shock reduced the proportion of embryos that developed to the blastocyst stage but there was no breedxtreatment interaction. At day 5 after insemination, the number of embryos recovered was too low to allow comparison of breed effects. In conclusion, genetic effects on cellular thermotolerance that make Brahman embryos more resistant to heat shock are not expressed at the 2-4-cell stage. There were few differences between Brahman and Holstein in response to estrus synchronization and superovulation. The fact that cleavage tended to occur earlier in Brahman than Holstein embryos suggests breed differences in timing of ovulation, fertilization or events leading to cleavage.  相似文献   

9.
The objectives of this study were to investigate differences in fertilization and development of embryos after in vitro fertilization of Bos taurus (cow) oocytes with sperm from either yaks (Bos grunniens) or Holstein bulls. Frozen-thawed spermatozoa (Holstein n=5 sires; yak n=5 sires) were evaluated for motility (forward progression) and acrosomal status immediately post-thaw and then 1, 2, 3, and 8h later. In vitro-matured cow oocytes (n=1652) were inseminated with either Holstein bull or yak spermatozoa and after an 18-h co-incubation period, a proportion of the oocytes were fixed and examined for sperm penetration, polyspermy, and male pronuclear formation. The remaining oocytes were cultured in vitro and evaluated for cleavage and blastocyst production rates. Overall, there were species differences (P<0.05) and an effect of time (P<0.01) in sperm motility and acrosome integrity. An effect (P<0.01) of a species-by-time interaction was detected for motility, but not for acrosome integrity. The percentage of oocytes penetrated and the formation of two pronuclei when cow oocytes were inseminated with yak spermatozoa (97.4% and 81.6%, respectively) were greater (P<0.01) than that achieved with Holstein bull spermatozoa (77.8% and 65.9%, respectively), but the incidence of polyspermy (>2 pronuclei) was similar (P>0.05; 10.8% vs. 15.8%). The yak male symbolxcow combination gave a higher cleavage rate than the Holstein male symbolxcow combination (P<0.05; 76.3% vs. 63.3%), but there was no difference in the blastocyst rate (17.9% vs. 14.5%). It is concluded that yak spermatozoa could successfully fertilize cattle oocytes and their hybrid embryos had normal competence to develop to blastocysts.  相似文献   

10.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

11.
The aim of the present study was to evaluate the effect of age on embryogenic competence of oocytes recovered from Bos indicus crossbred calves and heifers. Cumulus-oocyte complexes (COCs) were collected from 4- to 7-month-old calves (experiment 1) and from 9- to 14-month-old heifers (experiment 2) during processing at an abattoir. In both experiments cow COCs were used as control. COCs were in vitro matured and fertilized, and the presumptive zygotes co-cultured with cumulus cells until 224 h post insemination (hpi). In experiment 1, the development rate during the first 68-72 hpi was similar (P > 0.05) between embryos derived from calves and cows. Fewer embryos from calves developed to the blastocyst stage, resulting in a lesser blastocyst production as well as lesser hatching rate (P < 0.05). The embryo development after blastocyst stage was, nevertheless, similar (P > 0.05) between blastocysts derived from calves and cows, suggesting that the development after blastocoele formation is not compromised in embryos derived from calves. In experiment 2, there were no differences (P > 0.05) on cleavage, blastocyst and hatching rates between embryos derived from prepubertal heifers and cows. The rate of blastocyst development until hatching was also similar (P > 0.05). These results indicate that oocytes from 9- to 14-month-old B. indicus crossbred heifers have the same developmental competence as oocytes derived from cows, while ocytes derived from 4- to 7-month-old B. indicus crossbred calves are less competent in developing to the blastocyst stage in vitro. It suggests that oocyte competence in B. indicus crossbred cattle is achieved around 9-14 months of age.  相似文献   

12.
Based on in vitro experiments, Bos indicus embryos were more resistant to heat stress (HS) than Bos taurus embryos. To increase knowledge regarding differences between Bos indicus and Bos taurus in resistance to HS, the primary objective of this study was to determine if tolerance to HS is due to the breed, origin of the oocyte, sperm, or both. Additionally, the influence of the interval between ovary acquisition (in the abattoir) and oocyte aspiration in the laboratory, on early embryo development was ascertained. Oocytes were collected from Nelore and Holstein cows in an abattoir; 4.0 or 6.5 h later, oocytes were aspired in the laboratory, and then matured and fertilized using semen from Nelore (N), Gir (GIR), or Holstein (H) bulls. Ninety-six h post insemination (hpi), embryos with ≥ 16 cells were divided in two groups: control and HS. In the control group, embryos were cultured at 39°C, whereas in the HS group, embryos were subjected to 41°C for 12 h, and then returned to 39°C. Rates of cleavage, and formation of morula and blastocysts were higher (P < 0.05) for oocytes aspirated at 4.0 versus 6.5 h after ovaries were acquired. Heat stress decreased rates of blastocyst formation for all breeds (N × N; H × H; and H × GIR) and in both time intervals (4.0 and 6.5 h). However, N × N had higher cleavage rate (P < 0.05) in both time intervals when compared with H × H and H × GIR. In addition, Nelore oocytes fertilized with Nelore semen (N × N) had higher blastocyst yields (P < 0.05) in the control and HS group, when compared with the other two breeds (H × H and H × GIR). We concluded that the breed of origin of the oocyte was more important than that of the sperm for development of thermotolerance, because bull breed did not influence embryo development after HS, and in vitro early embryonic development was impaired by increasing (from 4 to 6.5 h) the interval between ovary acquisition and oocyte aspiration.  相似文献   

13.
Pattern and manipulation of follicular development in Bos indicus cattle   总被引:1,自引:0,他引:1  
Bos indicus cattle are widespread in tropical regions due to their adaptation to these environments. Although data on reproductive performance have indicated both inferior and superior results for B. indicus cattle, there is little doubt that B. indicus cattle are superior than Bos taurus cattle when they are both kept in tropical or subtropical environments, where stressors like hot temperatures, humidity, ectoparasites and low quality forages are greater. Reproductive endocrinology and oestrus behaviour of the B. indicus cattle have been studied for over 30 years; however, the application of technologies such as real time ultrasonography and Heat-Watch systems has expanded our knowledge on the ovarian follicular-wave dynamics during the oestrous cycle and the time of ovulation. Ovarian follicular dynamics in B. indicus cattle is characterised by the occurrence of two, three or sometimes four waves of follicular development. While dominance is similar to that in B. taurus cattle, maximum diameters of the dominant follicle and CL are smaller than those reported in B. taurus and are probably due to a lower capacity for LH secretion than in B. taurus. Duration of oestrus is approximately 10 h and the interval from oestrus to ovulation is about 27 h. However, the variability in response to prostaglandin F2alpha (PGF) treatments and the difficulty for oestrus detection in B. indicus cattle have limited the widespread application of artificial insemination (AI) and emphasizes the need for treatments that control follicular development and ovulation. Follicular-wave development in B. indicus cattle can be controlled mechanically by ultrasound-guided follicle ablation, or hormonally by treatments with GnRH or oestradiol and progestogen/progesterone in combination. Treatments with GnRH plus PGF and a second GnRH (synchronization protocol known as Ovsynch) or oestradiol benzoate (known as GPE) have resulted in acceptable pregnancy rates after fixed-time AI (FTAI) in cycling cows, but results were lower in heifers and cows in postpartum anoestrus. Alternatively, treatments with oestradiol and progestogen/progesterone releasing devices resulted in synchronous emergence of a new follicular wave, and a second oestradiol or GnRH treatment after device removal resulted in synchronous ovulation and acceptable pregnancy rates to FTAI. Furthermore, oestradiol and progesterone treatments combined with eCG (given at the time of device removal) increased pregnancy rates in suckled B. indicus cows and may be useful for the treatment of cows in postpartum anoestrus. In summary, exogenous control of luteal and follicular development facilitates the application of assisted reproductive technologies in B. indicus cattle by offering the possibility of planning AI programs without the necessity of oestrus detection and without sacrificing the overall results.  相似文献   

14.
Reproductive cycles in Bos indicus cattle   总被引:1,自引:0,他引:1  
Several studies using transrectal ovarian ultrasonic scanning in Bos taurus (B. taurus) cattle and more recently in Bos indicus (B. Indicus) females evaluated the reproductive cycles of heifers and cows under different conditions. In general, B. indicus cattle have more follicles and more follicular waves during the estrous cycle and ovulate from smaller follicles than B. taurus. Consequently B. indicus females have smaller corpora lutea and it is assumed circulating concentrations of estradiol and progesterone are also less. However, these findings may vary depending on the nutritional status and regimen in which the animals are managed. Moreover, there are significant differences between B. taurus and B. indicus regarding follicle size at the time of deviation of the dominant follicle. These differences in ovarian function between B. indicus and B. taurus, e.g. greater antral follicle population are, probably, the main reasons for the great success of in vitro embryo production programs in Zebu cattle, especially in Brazil.  相似文献   

15.
Twenty-three Boran(Bos indicus ) cows and heifers were superovulated with pregnant mare serum gonadotropin (PMSG); a total of four embryos and 4.1 +/- 0.3 (mean +/- SEM) ova per ova-producing donor resulted. Follicle stimulating hormone (FSH-P) was then used to superovulate 49 Boran cows for a total of 106 superovulations, of which 63 (59.4%) produced an average of 3.7 +/- 0.4 (mean +/- SEM) embryos. The embryo production was not influenced by either the season or the number of times(one to five) the cows were superovulated. A higher pregnancy rate was obtained when the selection of Boran recipients was based on their plasma-progesterone values (overall 52.5%, single embryos 63.3%, twin demi-embryos 45.8%) than when they were selected by palpation per rectum only (overall 43.8%, single embryos 50%, twin demi-embryos 36.4%). The twinning rate of twin demiembryos was 62.5%, whereas only single calves were born after transfer of two embryos per recipient. No pregnancies were produced following transfer of twin demi-embryos without zonae pellucidae. Transferring single demi-embryos gave a low pregnancy rate (13.3%). Twelve donor Boran cows (21 superovulations) bred with their fathers resulted in a high rate of early embryonic death; additionally, only 20.9% (overall) of the recipients became pregnant. Estrus synchronization of Boran cows with a progesterone releasing intravaginal device (PRID) for a short period (7 d) combined with one injection of prostaglandin (Day 6) produced a larger number of good quality recipients (70.5%) than using double prostaglandin injections (60%).  相似文献   

16.
Two experiments were designed to evaluate the effect of different insemination times (12 and 24h or 18 and 30h) and different types of semen (sex-sorted or non-sorted sperm) on embryo production in Nelore (Bos indicus) and Holstein (Bos taurus) superstimulated donors. In the first experiment, hormonal superstimulation of ovarian follicular development in Nelore donors (n=71) was performed in randomly allocated animals to one of the three treatment groups, and they were inseminated at 12 and 24h after an ovulatory stimulus with pLH treatment was applied, either with sex-sorted (4.2×10(6) sperm/insemination; S12/24; n=17) or non-sorted sperm (20×10(6) sperm/insemination; NS12/24; n=18), or they were inseminated at 18 and 30h using sex-sorted sperm (4.2×10(6) sperm/insemination; S18/30; n=19). A greater number of transferable embryos were found when sex-sorted sperm was used to inseminate the animals at 18 and 30h (4.5±3.0) compared to insemination at 12 and 24h (2.4±1.8; P<0.001). However, a greater embryo production (6.8±2.6) was obtained with non-sorted sperm. In the second experiment, the same insemination times and semen types were used in lactating high-production Holstein cows (n=12). A crossover design was employed in this trial. A lesser embryo production (P=0.007) was found in Holstein donors that were inseminated using sex-sorted sperm at 12 and 24h (4.6±3.0) compared to non-sorted sperm (8.7±2.8). However, intermediate results were obtained when the inseminations with sex-sorted sperm were performed at 18 and 30h (6.4±3.1). These results supported the current hypothesis that it is possible to improve embryo production using sex-sorted sperm in B. indicus and B. taurus superstimulated donors when the inseminations are performed near the same time as time-synchronized ovulations. However, the embryo production for timed artificial insemination (TAI) with sex-sorted sperm was still less than the production with non-sorted sperm.  相似文献   

17.
Frequencies of kappa-casein gene alleles were determined in 1316 animals from the Brazilian Bos indicus genetic groups (Sindhi cows, Gyr sires, Gyr cows, Guzerat sires, Guzerat cows, Nellore sires, and Gyr x Holstein crossbreds) by means of polymerase chain reaction-restriction fragment length polymorphism analysis using two independent restriction nucleases (Hinf I and HaeIII). The genotyping of kappa-casein alleles (A and B) is of practical importance, since the B allele is found to correlate with commercially valuable parameters of cheese yielding efficiency. The frequencies of the B allele of kappa-casein among breeds ranged from 0.01 to 0.30. The Sindhi breed had the highest frequency for the B allele (0.30), while the frequencies of this allele in other breeds ranged from 0.01 to 0.18. A wide variation in the B allele frequency among B. indicus breeds was found suggesting that molecular selection for animals carrying the B allele could impact breeding programs for dairy production.  相似文献   

18.
1. Two nucleoside phosphorylase (NP) phenotypes were detected in 844 animals from four distinct genetic groups of Bos taurus and Bos indicus derivation. 2. Bos indicus breeds like Guzerat (Kankrej), Gir, Nellore (Ongole) and Indubrazil presented an NP-H frequency of 1.00, 0.928, 0.776 and 0.754 respectively, while the Canchim breed, a Bos taurus-Bos indicus crossbred cattle (5/8 Charolais-3/8 Zebu) presented a frequency of 0.372. 3. The high frequency detected from the NP-H allele in the Bos indicus breeds strongly suggests that this enzyme is a genetic marker for cattle and that it probably has a very high frequency in all Indian breeds.  相似文献   

19.
Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.  相似文献   

20.
Advanced reproductive technologies, incuding IVF and interspecies embryo transfer, are becoming increasingly important for the preservation of endangered species. Previous attempts at interspecies transfers between Bos gaurus and Bos taurus have yielded compromised offspring. The goal of this investigation was to characterize the effects of interspecies transfer of IVF-derived embryos on subsequent neonatal outcome. To achieve this goal, fresh Bos gaurus IVF-derived embryos were transferred into Holstein (Bos taurus) recipients. Four fetuses were carried to term. Calf weight, temperature, heart rate, and respiration rate were recorded after birth. Blood samples also were obtained for determination of blood glucose, pH, packed cell volume (PCV), total hemoglobin (tHB), PO2, and PCO2. After parturition, milk production and health status of the recipients were recorded. Two calves were alive at birth, and two calves were stillborn. One of the calves that was born alive died within minutes after birth, while the other lived until approximately 26 h of age. Blood samples obtained from the calf that lived for 26 h showed it to be extremely acidotic and hypoglycemic; this calf also had marked difficulty thermoregulating. At necropsy, all calves showed evidence of in utero gasping and hypoxia, suggestive of premature placental separation. None of the recipient cows showed typical signs of impending parturition. After parturition, lactogenesis in all recipient cows was markedly decreased. On gross examination, placentae resulting from the interspecies transfers had fewer cotyledons that were also much larger in size compared to cotyledons from normal gaur placentae. Calves in this study had abnormalities consistent with those noted from previous interspecies transfers and with IVF and nuclear transfer (cloned) calves. Due to the design of this study, it is not possible to differentiate between problems resulting from the IVF process and those resulting from potential interspecies incompatibilities. However, interspecies transfers of in vitro-produced gaur embryos into Bos taurus are strongly discouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号