首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.  相似文献   

2.
Plant growth depends on the integration of environmental cues, nitrogen fixation and phytohormone-signaling pathways. The growth and development of Gracilaria dura was significantly influenced by the association of bacterial isolates. The putative bud-inducing epiphytic Exiguobacterium homiense and endophytic Bacillus pumilus, Bacillus licheniformis were examined for their ability to fix nitrogen and produce indole-3-acetic acid (IAA). These bacterial isolates were identified to the species level by biochemical tests, fatty acid and partial 16S rRNA gene sequence analysis. The B. pumilus, B. licheniformis and E. homiense produced 445.5, 335 and 184.1 μg mL(-1) IAA and 12.51, 10.14 and 6.9 mM mL(-1) ammonium, respectively, as determined using HPLC and spectroscopy. New bud regeneration observed after the addition of total protein of the bacterial isolates suggests that IAA is conjugated with protein. The epi- and endophytic bacterial isolates were able to induce five and 10 new buds per frond, respectively, in comparison to the control, where one to two buds were observed. The combination of 25 °C and 30‰ showed the optimum condition for bud induction in G. dura when incubated with the total protein of B. pumilus. Our finding revealed for the first time that IAA coupled with nitrogen fixation induce and regenerate new buds in G. dura.  相似文献   

3.
Bacterial isolates from wild Agaricales fungi detoxified tolaasin, the inducer of brown blotch disease of cultivated mushrooms produced by Pseudomonas tolaasii. Mycetocola tolaasinivorans and Mycetocola lacteus were associated with fruit bodies of wild Pleurotus ostreatus and wild Lepista nuda, respectively. Tolaasin-detoxifying bacteria belonging to other genera were found in various wild mushrooms. An Acinetobacter sp. was isolated from fruit bodies of Tricholoma matsutake, Bacillus pumilus was isolated from Coprinus disseminatus, and Sphingobacterium multivorum was isolated from Clitocybe clavipes. A Pedobacter sp., which seemed not be identifiable as any known bacterial species, was isolated from a Clitocybe sp. Tolaasin-detoxifying bacteria identified thus far were attached to the surface of mycelia rather than residing within the fungal cells. M. tolaasinivorans, M. lacteus, B. pumilus, the Pedobacter sp., and S. multivorum efficiently detoxified tolaasin and strongly suppressed brown blotch development in cultivated P. ostreatus and Agaricus bisporus in vitro, but the Acinetobacter sp. did so less efficiently. These bacteria may be useful for the elucidation of mechanisms involved in tolaasin-detoxification, and may become biological control agents of mushroom disease.  相似文献   

4.
Beleneva IA 《Mikrobiologiia》2008,77(4):558-565
Bacilli of the species Bacillus subtilis, B. pumilus, B. mycoides, B. marinus and B. licheniformis (a total of 53 strains) were isolated from 15 invertebrate species and the water of the Vostok Bay, Peter the Great Bay, Sea of Japan. Bacilli were most often isolated from bivalves (22.7%) and sea cucumbers (18.9%); they occurred less frequently in sea urchins and starfish (13.2 and 7.5%, respectively). Most of bacilli strains were isolated from invertebrates inhabiting silted sediments. No Bacillus spp. strains were isolated from invertebrates inhabiting stony and sandy environments. The species diversity of bacilli isolated from marine objects under study was low. Almost all bacterial isolates were resistant to lincomycin. Unlike B. pumilus, B. subtilis isolates were mostly resistant to benzylpenicillin and ampicillin. Antibiotic sensitivity of B. licheniformis strains was variable (two strains were resistant to benzylpenicillin and oxacillin, while one was sensitive). A significant fraction of isolated bacilli contained pigments. Pigmented strains were more often isolated from seawater samples, while colorless ones predominated within hydrobionts. B. subtilis colonies had the broadest range of colors. In the Bacillus strains obtained, DNase, RNase, phosphatase, elastolytic, chitinase, and agarolytic activity was detected. Bacilli strains with hydrolytic activity occurred in invertebrates more often than in seawater.  相似文献   

5.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

6.
Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.  相似文献   

7.
玉米根系内生细菌种群及动态分析   总被引:26,自引:1,他引:25  
2000-2002年,先后对辽宁省14个玉米主栽品种进行了根系内主要细菌种群分析.结果表明.玉米内生细菌的主要种群为芽孢杆菌属(Bucillus spp.),此外还包括肠杆菌属、沙雷氏杆菌属、假单胞菌属、黄单胞菌属和棍状杆菌属.其中Bacillus分布最广,已鉴定出8个种,包括枯草芽孢杆菌、巨大芽孢杆菌、蜡状芽孢杆菌、地衣芽孢杆菌、炭疽芽孢杆菌、蕈状芽孢杆菌、短小芽孢杆菌、环状芽孢杆菌.Bacillusspp.总量占根系内生细菌总量比苗期和成株期分别为75.5%和76.6%.内生细菌在不同玉米品种和不同生育期之间存在程度不同的差异.研究发现,品种的遗传背景与其内生细菌的种类和数量显著相关.  相似文献   

8.
An aberrant random amplified polymorphic DNA (RAPD) marker in genomic DNA of tissue culture plantlets was frequently observed during a comparison of DNA fingerprints derived from potato germplasm grown in tissue culture and the field. The RAPD marker was cloned, sequenced and determined to be of bacterial origin. A bacterial contaminant was isolated from the tissue culture plants and identified as a Bacillus pumilus. A set of sequence characterised amplified region (SCAR) primers were designed from the sequence of the cloned fragment and tested for the specific detection of B. pumilus. Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) were also used to generate B. pumilus profiles specific to our isolate in order to test and confirm the sequence homology of amplified markers generated from a range of DNA samples isolated from tissue culture plants and pure isolates of B. pumilus-like bacteria.  相似文献   

9.
【目的】感柑橘黄龙病长春花植株与健康长春花植株不同部位内生细菌菌群结构及功能对柑橘黄龙病菌与长春花内生细菌的相关性研究提供理论基础。【方法】利用兼性厌氧可培养技术以及植物内生菌功能特性分析相结合的方法。【结果】分别从感病和健康长春花叶、茎、根的组织中分离获得67株内生细菌,与GenBank中29种细菌的相似性达到97%-100%。其中短小杆菌属(Curtobacterium sp.)、欧文氏菌属(Erwinia sp.)、蜡样芽胞杆菌(Bacillus cereus)为感病长春花内生细菌的优势菌群,鞘胺醇单胞菌属(Brevundimonas sp.)、芽胞杆菌属(Bacillus sp.)为健康长春花内生细菌的优势菌群;马胃葡萄球菌(Staphylococcus equorum)为两者的共同优势菌群。29种内生细菌进行功能分析,其中6株内生细菌至少具有4种功能特性,分属于马胃葡萄球菌、苏云金芽孢杆菌、巨大芽孢杆菌、短小杆菌属、摩氏摩根菌(Morganella morganii)及溶杆菌属(Lysobacter sp.)5个属。【结论】感病与健康长春花植株中均含有丰富的内生细菌且差异较大,黄龙病菌的存在改变了长春花原有内生细菌的菌群结构。通过分析菌群的差异,有望找到与柑橘黄龙病菌生长相关的菌种。  相似文献   

10.
Over 100 endophytic bacterial isolates were isolated from surface-sterilised roots of the Fabaceae family in East Azerbaijan farms. These isolates were screened for their in vitro biocontrol activity against Colletotrichum lindemuthianum by dual culture technique using potato dextrose agar (PDA) medium. Eight bacterial isolates (Bacillus subtilis subsp. subtilis, Bacillus atrophaeus, B. tequilensis, B. subtilis subsp. spizizenii, Streptomyces cyaneofuscatus, S. flavofuscus, S. parvus, S. acrimycini) showed promising inhibition on mycelial growth of C. lindemuthianum , and thus, these isolates were selected for greenhouse experiments. The disease control rate using these selected endophytic bacteria was varied from 40 to 76.80% in greenhouse without any negative effects on different growth performance, suggesting that these selected endophytic bacteria are potential to be developed as biocontrol agents.  相似文献   

11.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

12.

Background and Aims

The role and linkage of endophytic bacteria to resistance of peanut seeds to biotic stress is poorly understood. The aims of the present study were to survey the experimental (axenic) and control (conventional) peanut plants for the predominant endophytic bacteria, and to characterize isolates with activity against selected A. flavus strains.

Methods

Young axenic plants were grown from presumably bacteria-free embryos in the lab, and then they were grown in a field. Endophytic bacterial species were identified by the analysis of DNA sequences of their 16S-ribosomal RNA gene. DNA extracted from soil was also analyzed for predominant bacteria.

Results

Mature seeds from the experimental and control plants contained several species of nonpathogenic endophytic bacteria. Among the eight bacterial species isolated from seeds, and DNA sequences detected in soil, Bacillus thuringiensis was dominant. All B. amyloliquefaciens isolates, the second abundant species in seeds demonstrated activity against A. flavus. This effect was not observed with any other bacterial isolates. There was no significant difference in number and relative occurrence of the two major bacterial species between the experimental and conventionally grown control seeds.

Conclusion

Endophytic bacterial colonization derives from local soil and not from the seed source, and the peanut plant accommodates only selected species of bacteria from diverse soil populations. Some bacterial isolates showed antibiosis against A. flavus.  相似文献   

13.
Aim:  To isolate and identify black pepper ( Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease.
Methods and Results:  Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici . Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in green house trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa ( Pseudomonas EF568931), IISRBP 25 as P. putida ( Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium ( B. megaterium EU071712) based on 16S rDNA sequencing.
Conclusion:  Black pepper associated P. aeruginosa , P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper.
Significance and Impact of the Study:  This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.  相似文献   

14.
Isolation of plant-growth-promoting Bacillus strains from soybean root nodules   总被引:10,自引:0,他引:10  
Endophytic bacteria reside within plant tissues and have often been found to promote plant growth. Fourteen strains of putative endophytic bacteria, not including endosymbiotic Bradyrhizobium strains, were isolated from surface-sterilized soybean (Glycine max. (L.) Merr.) root nodules. These isolates were designated as non-Bradyrhizobium endophytic bacteria (NEB). Three isolates (NEB4, NEB5, and NEB17) were found to increase soybean weight when plants were co-inoculated with one of the isolates and Bradyrhizobium japonicum under nitrogen-free conditions, compared with plants inoculated with B. japonicum alone. In the absence of B. japonicum, these isolates neither nodulated soybean, nor did they affect soybean growth. All three isolates were Gram-positive spore-forming rods. While Biolog tests indicated that the three isolates belonged to the genus Bacillus, it was not possible to determine the species. Phylogenetic analysis of 16S rRNA gene hypervariant region sequences demonstrated that both NEB4 and NEB5 are Bacillus subtilis strains, and that NEB17 is a Bacillus thuringiensis strain.  相似文献   

15.
Aerobic bacterial cultures of the tympanic cavity of the middle ear were performed in eight eastern box turtles (Terrapene carolina carolina) with aural abscesses and 15 eastern box turtles without aural abscesses (controls) that were admitted to The Wildlife Center of Virginia, Virginia, USA during 2003. Twenty-two bacterial isolates were identified from 17 turtles including 10 gram-negative and 12 gram-positive bacteria. Ten of 15 control animals had bacterial growth, resulting in identification of 13 bacteria, including six gram-negative and seven gram-positive agents. Seven of eight turtles with aural abscesses had bacterial growth, and 10 isolates were identified, including four gram-negative and six gram-positive organisms. The most frequently isolated bacteria from control animals were Micrococcus luteus (n = 3) and Pantoea agglomerans (n = 2). Morganella morganii (n = 2) was the only species isolated from the tympanic cavity of more than one turtle with aural abscesses. Staphylococcus epidermidis (n = 2) was the only species isolated from both groups. A trend toward greater bacterial growth in tympanic cavities of affected turtles compared with turtles without aural abscesses was noted. No single bacterial agent was responsible for aural abscesses in free-ranging eastern box turtles in this study, an observation consistent with the hypothesis that aerobic bacteria are not primary pathogens, but secondary opportunistic invaders of environmental origin.  相似文献   

16.
Pea plants grown in the field were used to study the natural incidence of endophytic bacteria in the stem. Eleven pea cultivars at the flowering stage were screened for the presence of endophytic bacteria using a printing technique with surface disinfested stem cross-sections on 5% Trypticase Soy Agar (TSA). Five cultivars showed colonization. Cultivar Twiggy showed the highest and most consistent colonization and was further investigated. Stems of cv. Twiggy at the pod stage were analyzed for endophytic bacterial types and populations. Cross-sections of surface disinfested stems were printed on 5% TSA. Endophytic bacterial populations decreased from the lower to the upper part of the stem. One section from the third and the fourth internode was surface disinfested, homogenized, and spiral plated on the media 5% TSA, R2A, and SC (Davis et al. 1980). Over a series of 30 samples, 5% TSA gave significantly better recovery of bacterial endophytes compared with R2A and SC media. For most stems, populations ranged from 10(4) to 10(5) CFU/g except in one of the field blocks in which endophyte populations were uniformly higher. Comparison of colony counts by spiral plating and printing showed a positive correlation. The most frequently recovered bacterial types were Pantoea agglomerans and Pseudomonas fluorescens. Less frequently isolated were Pseudomonas viridiflava and Bacillus megaterium.  相似文献   

17.
宁夏枸杞内生细菌的多样性及其抑菌活性研究   总被引:2,自引:0,他引:2  
【目的】对宁夏枸杞各药用部位内生细菌的分布特征、遗传多样性和抑菌活性进行分析。【方法】采用菌落计数和16S rRNA基因序列分析法研究枸杞内生细菌的分布特征、遗传多样性,采用琼脂扩散法测定其抑菌活性。【结果】从各药用组织器官中分离出内生细菌34株,隶属于7科11属,内生细菌的数量和群落组成存在明显的组织特异性,其数量表现为根皮>叶>花>果实,而多样性则表现为花>根皮>叶>果实。芽孢杆菌属为枸杞优势内生菌群,分布于所有组织中;抑菌实验结果表明有76.5%的内生菌对一种或多种病原菌的生长有抑制作用,芽孢杆菌属菌株R2、R7、L3和短波单胞菌属的R3拮抗番茄炭疽杆菌和玉米大斑病菌的能力较强,而多数菌株对大肠杆菌和金黄色葡萄球菌的抑制能力较弱。【结论】枸杞可培养内生细菌遗传多样性丰富,对植物病原菌有较强的抑制活性。  相似文献   

18.
【目的】从牡丹(Paeonia suffruticosa Andr.)根部组织中分离鉴定内生细菌,测定拮抗菌株脂肽类活性物质的体外抑菌活性。【方法】采用平板对峙法筛选出对牡丹灰霉病菌(Botrytis paeoniae Oadem)、牡丹炭疽病菌(Gloeosporium sp.)、牡丹黑斑病菌(Altenaria sp.)、牡丹黄斑病菌(Phyllosticta commonsii)有拮抗作用的内生细菌。基于形态特征、生理生化特性和16S rRNA基因序列同源性鉴定拮抗菌株。根据脂肽类抗菌物质合成相关基因序列对拮抗菌株进行基因扩增检测,采用酸沉淀法提取拮抗菌株的脂肽类物质,平板对峙法测定脂肽类物质的体外抑菌活性。【结果】从牡丹根部组织中共分离获得62株内生细菌,其中菌株Md31和Md33对4种病原菌均有较明显的抑制作用。Md31和Md33被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。通过对菌株Md31和Md33进行5个脂肽类合成功能基因bmyB、fenD、ituC、srfAA和srfAB的检测,序列同源性分析,表明两个菌株具有合成脂肽类物质的能力。菌株Md31和Md33的脂肽类粗提物对所测试的牡丹病原真菌均具有不同程度的抑制作用。【结论】获得了2株对牡丹病原菌有良好抑制效果的解淀粉芽孢杆菌Md31和Md33,两个菌株的脂肽类粗提物也具有较强的体外抑菌活性,该研究为牡丹内生细菌的进一步开发应用奠定了基础。  相似文献   

19.
AIMS: To isolate aerobic mesophilic bacilli and thermophilic bacteria from different paper mill samples and to evaluate their potential harmfulness. METHODS AND RESULTS: A total of 109 mesophilic and 68 thermophilic isolates were purified and characterized by automated ribotyping and partial 16S rDNA sequencing. The mesophilic isolates belonged to the genera Bacillus (13 taxa), Brevibacillus (three taxa) and Paenibacillus (five taxa). The thermophilic bacteria represented seven taxa of Bacillus, Geobacillus or Paenibacillus, four of proteobacteria and one of actinobacteria. The most frequently occurring bacteria were Bacillus cereus, B. licheniformis, Pseudoxanthomonas taiwanensis and bacteria closely related to Paenibacillus stellifer, P. turicensis or Leptothrix sp. One mill was contaminated throughout with bacteria of a novel mesophilic genus most closely related to Brevibacillus centrosporus and another with bacteria of a novel thermophilic genus most closely related to Hydrogenophilus thermoluteolus. One B. cereus isolate producing haemolytic diarrhoeal enterotoxin was detected and all the tested B. licheniformis isolates produced a metabolite toxic to boar sperm cells. CONCLUSIONS: The bacilli and thermophilic bacteria isolated represent species which should not present occupational hazards in paper mill environments. The most harmful bacterium detected was B. licheniformis and potentially also B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of the microbial diversity in a paper mill provides a rational basis for development of an effective controlling programme. A database constructed from the fingerprints generated using automated ribotyping helps to identify and trace the contamination routes of bacteria occurring in paper mills.  相似文献   

20.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号