首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
Prostaglandins (PGs) are autocrine or paracrine hormones that may interact with circulating hormones such as parathyroid hormone (PTH) in bone. We examined the interaction of the PGs, PGF2 alpha, PGE2, and 6-keto-PGF1 alpha with PTH to enhance the rapid, initial transient rise in free cytosolic calcium ([Ca2+]i) and cAMP levels stimulated by PTH. Pretreatment of UMR-106, MC3T3-E1, and neonatal rat calvarial osteoblast-like cells by PGs resulted in an enhancement of the early transient rise in [Ca2+]i stimulated by PTH. PGF2 alpha was approximately 100 times more potent than PGE2. PGE2 itself was more potent than 6-keto-PGF1 alpha in enhancing PTH-stimulated rise in [Ca2+]i. Near-maximal augmentation was achieved at PGF2 alpha doses of 10 nM and PGE2 of 1 microM. The degree of augmentation in [Ca2+]i by PGF2 alpha was independent of preincubation time. PGF2 alpha pretreatment did not alter the EC50 for the PTH-induced [Ca2+]i increase but only the extent of rise in [Ca2+]i at each dose of PTH. The augmented increase in [Ca2+]i was mostly due to enhanced PTH-mediated release of Ca2+ from intracellular stores. PGF2 alpha did not stimulate an increase in PTH receptor number as assessed by [125I]-PTH-related peptide binding. PG pretreatment partially reversed PTH inhibition of cell proliferation, suggesting that an increase in [Ca2+]i may play a role in tempering the anti-proliferative effect of PTH mediated by cAMP. These studies suggest a new mode by which PGs can affect cellular activity.  相似文献   

2.
Measurements were made of the electrophysiological and cAMP response to changes in extracellular [Ca2+] and to hormone application in a bone cell clone. Both transient and long-term electrophysiological responses were studied. An increase in extracellular [Ca2+] usually resulted in a transient hyperpolarization of about 60-sec duration. In addition, increases in extracellular [Ca2+] from 0.9 to 1.8 mM and from 1.8 to 3.6 mM resulted in long-term hyperpolarization and increased potential fluctuations. Increasing bathing [Ca2+] until the membrane potential reached the K+ equilibrium level resulted in a significant decrease in fluctuations. Addition to the bathing medium of quinine, a putative blocker of the Ca2+-dependent K+ channel, resulted in long-term depolarization of the mean membrane potential, and a long-term decrease in potential fluctuations. Addition of Mg2+, a mild antagonist of Ca2+ entry into the cell, produced transient depolarization and reduction of potential fluctuations. These effects suggest that the potential fluctuations reflect cytoplasmic [Ca2+] fluctuations via Ca2+-dependent K+ membrane channels. Under an extracellular [Ca2+] of 1.8 mM, the application of prostaglandin E2 (PGE2), isoproterenol, and parathyroid hormone produced no significant effect on mean membrane potential or on the sustained potential fluctuations, but PGE2 did significantly raise intracellular cAMP. Under an increased bathing [Ca2+], significant changes in mean potential and fluctuations did occur in response to PGE2, but not in response to the other hormones, while the PGE2 effect on cAMP was not greatly changed. Hyperpolarizing transients of about 30-sec duration occurred in response to all of the hormones, particularly at an extracellular [Ca2+] of 3.6 mM. Thus, there are both transient and long-term electrophysiological responses to hormone application, with only the long-term response correlated with the production of cAMP. These electrophysiological responses may represent separate transient and long-term calcium transport responses to hormone application.  相似文献   

3.
T Kawase  I Ishikawa  A Suzuki 《Life sciences》1988,43(26):2241-2247
The effect of NaF on cytosolic free Ca2+ concentrations [( Ca2+]i) was examined in a clonal osteoblast-like cell line (MOB 3-4) loaded with Fura 2. MOB 3-4 cells in a sparse culture, which exhibited neither alkaline phosphatase (ALP) activity nor the response to parathyroid hormone (PTH), responded to NaF (0.1-10 mM) to increase [Ca2+]i transiently. In contrast, the cells in a dense culture, which exhibited both ALP activity and the response to PTH, responded to NaF (above 4 mM) to increase [Ca2+]i slowly. [Ca2+]i in osteoblasts in primary culture slowly increased in response to both NaF (above 4 mM) and PTH (3 U/ml). Thus, the sensitivity and the response of MOB 3-4 cells to NaF and PTH varied with the culture density, and high culture density matured the cells like osteoblasts in primary culture. These NaF-induced Ca2+ mobilizations were not dependent upon external Ca2+ and were enhanced by Al3+ (1 microM), whereas the PTH-induced Ca2+ mobilizations were due to Ca2+ influx. These results suggest that the maturation of MOB 3-4 cells, dependent upon the culture density, modulates intracellular signal transduction pathways and thereby alters the NaF-induced Ca2+ mobilization, and that the culture density must be taken into consideration in studying Ca2+ mobilization in such an osteoblast-like cells line as MOB 3-4 cell line.  相似文献   

4.
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism.  相似文献   

5.
We have demonstrated previously that 17 beta-estradiol (E2) stimulates cell proliferation in skeletal tissues, as measured by increased DNA synthesis and creatine kinase (CK) specific activity, and that calciotrophic hormones modulate E2 activity in rat osteoblastic sarcoma cells (ROS 17/2.8). Moreover, E2 failed to stimulate DNA synthesis in vitamin D-depleted female rat bone in the absence of prior i.p. injections of 1.25(OH)2D3. We have, therefore, studied the effects of pretreatment of cells by one hormone on their response to challenge by a second hormone. We now report reciprocal interactions of sex steroids and other hormones modulating bone formation on cell proliferation parameters in primary bone and cartilage cell cultures: these interactions can selectively augment or diminish cell responsiveness to a given hormone. Pretreatment of rat epiphyseal cartilage cell cultures with 1.25(OH)2D3, 24.25(OH)2D3 or parathyroid hormone (PTH) for 5 days, followed by E2 treatment for 24h, resulted in increased DNA synthesis compared to cultures pretreated with vehicle. Prostaglandin (PGE2) pretreatment blocked further response to E2. In the reciprocal case, rat epiphyseal cartilage cells, pretreated with E2, showed an increased response to PTH, a loss of the response to PGE2 or 24.25(OH)2D3 and an inhibition of CK activity and DNA synthesis by 1.25(OH)2D3, similar to the characteristic inhibitory action of 1.25(OH)2D3 in osteoblasts. By contrast, rat epiphyseal cartilage cells pretreated with testosterone showed no changes in response to PTH, 24.25(OH)2D3 or PGE2 and a decreased response to E2, but were stimulated by 1.25(OH)2D3. Rat embryo calvaria cell cultures behaved similarly to epiphyseal cartilage cultures except that 24.25(OH)2D3 pretreatment did not increase the response to E2. Reciprocally, pretreatment with E2 before exposure to calciotrophic hormones did not change the responses of rat embryo calvaria cell cultures to 1.25(OH)2D3 or 24.25(OH)2D3. These findings suggest that the mutual interactions between calciotrophic hormones and E2, demonstrated here in vitro, could selectively affect the responses of bone and cartilage cells to E2 by several mechanisms. These possibilities include increased E2 receptors and E2-stimulated differentiation of cartilage cells to more E2 responsive cells showing some characteristics of osteoblasts.  相似文献   

6.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

7.
The effects of hormonal modulators of osteoblast function, parathyroid hormone, 1,25(OH)(2)D(3) and prostaglandins on [Ca(2+)](i) in periosteal-derived osteoblasts from rat femurs have been investigated. Our results show that application of parathyroid hormone PTH (10(-5) M) and prostaglandin E(2) (PGE(2)) (4 microM) result in a rapid heterogeneous elevation in [Ca(2+)](i) that, in the case of PTH, is dependent on both extracellular and intracellular sources of calcium. Variable responses to treatments have been found within populations of cells. The PGE(2) response is dose dependent. Treatment with 1,25(OH)(2)D(3) (10(-8) M) induces a brief (60-90 sec) elevation in [Ca(2+)](i) that is almost totally abolished in EGTA-buffered Ca(2+)-free medium. Interactive effects of multiple hormone treatments have been observed. Pretreatment with 1,25(OH)(2)D(3) results in near-total inhibition of the PTH and PGE(2) responses. In conclusion, modulation of [Ca(2+)](i) appears to play a role not only in the direct effects of osteotropic hormones on osteoblasts but also in the synergistic and antagonistic effects between circulating hormones.  相似文献   

8.
Concentrations of cyclic AMP (cAMP) were increased in isolated renal cortical tubules from hamsters by both parathyroid hormone (PTH) and prostaglandin E1 (PGE1) with maximal effects of PGE1 being 6-8 fold greater than those of PTH during a 10 min period. However, cAMP concentrations in cells treated with 1-methyl-3-isobutylxanthine (MIX) were increased with maximal concentrations of either hormone to the same degree. Similar effects of both hormones were observed on adenylate cyclase activity in renal homogenates. Simultaneous addition of hormones produced changes in both cAMP concentrations in intact tubules as well as adenylate cyclase activity of homogenates which were not completely additive. Degradation of cAMP, estimated in intact tubules as the difference in cAMP levels in the presence and absence of MIX, was increased by both hormones, however, changes were 2-3 fold greater in tubules exposed to PTH than to PGE1. Neither hormone directly altered cAMP phosphodiesterase (PDE) activity in either 30,000 x g supernatant or pellets from renal cortical homogenates. The results suggest that both hormones increase the production of cAMP in renal cortical tubules and may share a common target cell type in this response. Degradation of cAMP, however, is differentially effected by the two hormones, probably reflecting differences exerted on intracellular mechanisms regulating the enzymatic hydrolysis of cAMP.  相似文献   

9.
Glucocorticoids are known to increase the cyclic AMP response to parathyroid hormone (PTH) in cultured bone organs or bone cells. Using the osteoblast-like cell line ROS 17/2.8, which possesses receptors for both PTH and glucocorticoids, we investigated which component of the complex hormone receptor-guanine nucleotide regulatory unit--adenylate cyclase was affected by dexamethasone treatment. In response to PTH, isoproterenol or forskolin, a compound that is supposed to act directly on the catalytic unit, cyclic AMP production by intact cells and adenylate cyclase activity in purified plasma membrane were markedly increased by dexamethasone. Whereas NaF, guanosine 5'-[beta gamma-imido]triphosphate and Mn/ stimulated adenylate cyclase activity were similarly enhanced in membranes isolated from glucocorticoid-treated cells, the activity of the stimulatory guanine nucleotide regulatory unit, as assessed by reconstitution into membranes from the CYC- clone, which is genetically devoid of this component, was not altered. Thus in osteoblast-like cells dexamethasone appears to increase cyclic AMP synthesis by influencing the catalytic unit. Moreover, since it has been reported that glucocorticoids may produce changes in cell calcium metabolism, we evaluated cytoplasmic free Ca2+ concentration ([Ca2+]i) and intracellular Ca2+ stores mobilizable by the bivalent-cationophore ionomycin, by using the intracellular fluorescent indicator Quin-2. The results indicated that dexamethasone treatment did not influence [Ca2+]i but markedly decreased ionomycin-releasable Ca2+ stores.  相似文献   

10.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

11.
The effect of activin A on the cytosolic free calcium concentration ([Ca2+]i) in normal rat pituitary cells was examined using a calcium sensitive fluorescent dye, indo 1 AM, and a digital imaging fluorescent microscope system. The cells showing an increase in [Ca2+]i in response to activin A were then characterized by comparison with cells responding to growth hormone releasing hormone (GRH), thyrotropin releasing hormone (TRH), corticotropin releasing hormone (CRH), and gonadotropin releasing hormone (GnRH) in monolayer cultures of normal rat pituitary cells. Activin A increased [Ca2+]i in some cells in a mixed population of normal rat pituitary cells. The cells that responded to activin A also responded to GRH. Most of these cells were not affected by other tropic hormones (CRH, TRH, and GnRH), but a few cells responded to both GRH and TRH. None of the activin A-responding cells responded to CRH or GnRH, and none of the CRH- or GnRH-responding cells responded to activin A. In a preparation of somatotropes purified 80-90% by fluorescence-activated cell sorting, activin A increased [Ca2+]i in 30% of the cells that shows a [Ca2+]i-response to GRH. These findings suggest direct involvement of somatotropes in activin A-induced biological events in the rat pituitary gland.  相似文献   

12.
In quiescent cultures of Swiss 3T3 cells, prostaglandin E1 (PGE1) known to elevate cAMP increased rapidly cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured with the fluorescent Ca2+ indicator quin2. The primary source of the PGE1-induced elevation of [Ca2+]i was extracellular. Pretreatment of the cells with various doses of 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C-activating phorbol ester, inhibited the PGE1-induced elevation of [Ca2+]i in a dose-dependent manner. Inversely, TPA enhanced slightly the PGE1-induced increase of cAMP. TPA alone did not affect the basal level of [Ca2+]i or cAMP in the absence of PGE1. The inhibitory action of TPA on the PGE1-induced elevation of [Ca2+]i was mimicked by other protein kinase C-activating agents such as phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate known to be inactive for protein kinase C was ineffective in this capacity. Prolonged treatment of the cells with phorbol 12,13-dibutyrate resulted in the down-regulation and disappearance of protein kinase C. In these protein kinase C-deficient cells, PGE1 still elevated [Ca2+]i to the same extent as that in the control cells, but TPA did not inhibit the PGE1-induced elevation of [Ca2+]i. These results strongly suggest that protein kinase C serves as an inhibitor for PGE1-induced Ca2+ influx in Swiss 3T3 cells.  相似文献   

13.
Previous attempts to show a direct effect of physiological concentrations of 17 beta-estradiol (beta E2) on bone in vitro have been unsuccessful. We describe a culture system using neonatal mouse calvariae in which beta E2 in the range 1 pM to 1 nM inhibited parathyroid hormone (PTH) stimulated prostaglandin E2 (PGE2) release by 50 to 70% in the presence and absence of cortisol. In addition, beta E2 reduced medium calcium concentration and release of previously incorporated 45Ca by 10 and 20%, respectively, in PTH stimulated cultures. Indomethacin did not block beta E2 effects on resorption. 17 alpha-Estradiol (alpha E2) reduced PTH stimulated 45Ca release but not PGE2 release. Thus, beta E2 has direct effects on bone consistent with its known effects to decrease bone resorption in vivo.  相似文献   

14.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

15.
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport.  相似文献   

16.
Changes in free cytosolic calcium were measured in UMR-106 cells in response to parathyroid hormone (PTH) stimulation. Bovine PTH-(1-34) induced an increase in [Ca2+]i with the contour of the rise in [Ca2+]i occurring in three successive phases: a rapid increase in [Ca2+]i occurring within seconds, rapid decrement in [Ca2+]i to near-resting levels within 1 min, and slow increment in [Ca2+]i. Phase one and phase three increases in [Ca2+]i were dependent on medium calcium. The phase one rise in [Ca2+]i was inhibitable by the calcium channel blockers lanthanum and verapamil. Only the phase one rise in [Ca2+]i was blocked by preincubation of the cells with the phorbol ester, phorbol 12-myristate 13-acetate. This channel was also blocked when cellular cAMP levels were increased prior to PTH stimulation. The phase two decrement of [Ca2+]i was due to the rapid inactivation of the phase one calcium channel. The phase three rise in [Ca2+]i was mediated by cellular cAMP levels. This cAMP-dependent Ca2+ channel was insensitive to pretreatment of the cells with phorbol diesters and showed low sensitivity to Ca2+ channel blockers. It is concluded that UMR-106 cells respond to PTH stimulation by the activation of a cAMP-independent Ca2+ channel. This channel rapidly inactivates. The subsequent PTH-dependent increase in cellular cAMP is followed by activation of a cAMP-dependent Ca2+ channel resulting in a slow rise in [Ca2+]i.  相似文献   

17.
We investigated cellular mechanisms mediating the parathyroid hormone (PTH)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated perfused rabbit connecting tubules. Prior and/or concomitant exposure to 0.5 mM of N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-8), a cyclic nucleotide-dependent protein kinase inhibitor, abolished the rise in [Ca2+]i produced by 0.1 nM PTH in five connecting tubules and suppressed it by approximately 50% in another five. In the latter, there was a delayed onset in the rise of [Ca2+]i. Such responses contrasted to the prompt increase in [Ca2+]i in PTH-stimulated control tubules. However, when H-8 was withdrawn, [Ca2+]i rose within minutes to reach a plateau value similar to the uninhibited response to PTH in controls, indicating rapidly reversible inhibition by H-8. In an otherwise identical protocol, 0.5 mM H-8 also reversibly suppressed the rise in [Ca2+]i induced by 0.175 mM 8-Br-cAMP. In contrast to the stimulatory effect of 8-Br-cAMP on [Ca2+]i, 1 mM 8-Br-cGMP caused no increase. At a concentration of 0.4 mM, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), a well-characterized cAMP-dependent protein kinase inhibitor, totally abolished the rise in [Ca2+]i caused by 0.1 nM PTH. We conclude that a cAMP-dependent protein kinase plays an important role in the PTH-stimulated rise in [Ca2+]i in the rabbit connecting tubule. Since the increase in [Ca2+]i was shown previously to depend on extracellular Ca2+, we propose that cAMP-dependent protein phosphorylation is important in mediating PTH-stimulated Ca2+ fluxes across plasma membranes of connecting tubule cells.  相似文献   

18.
The action of alpha 1-adrenergic agonists (noradrenaline in the presence of propranolol), vasopressin and angiotensin on the intracellular free Ca2+ concentration, [Ca2+]i, was determined by using the fluorescent dye quin2 in isolated rat liver cells. In the presence of external Ca2+ (1.8 mM), 1 microM-noradrenaline induced an increase in [Ca2+]i up to about 800 nM without apparent delay, whereas 10 nM-vasopressin and 1 nM-angiotensin increased [Ca2+]i to values higher than 1500 nM with a lag period of about 6s. The successive addition of the hormones and of their specific antagonists indicated that the actions of the three Ca2+-mobilizing hormones occurred without apparent desensitization (over 6 min) and via independent receptors. The relative contributions of internal and external Ca2+ pools to the cell response were determined by studying the hormone-mediated [Ca2+]i increase and glycogen phosphorylase activation in low-Ca2+ media (22 microM). In this medium: (1) [Ca2+]i was lowered and the hormones initiated a transient instead of a sustained increase in [Ca2+]i; subsequent addition (2 min) of a second hormone promoted a lesser increase in [Ca2+]i; in contrast, the subsequent addition (2 min) of Ca2+ (1.8 mM) caused [Ca2+]i to increase to a value close to that initiated by the hormone in control conditions, the amplitude of the latter response being dependent on the concentration of Ca2+ added to the medium; (2) returning to normal Ca2+ (1.8 mM) restored the resting [Ca2+]i and allowed the hormone added 2 min later to promote a large increase in [Ca2+]i whose final amplitude was also dependent on the concentration of Ca2+ added beforehand. Similar results were found when the same protocol was applied to the glycogen phosphorylase activation. It is concluded that Ca2+ influx is required for a maximal and sustained response and to reload the hormone-sensitive stores.  相似文献   

19.
While the stimulatory effect of parathyroid hormone (PTH) on osteoblast-like cell adenylate cyclase is well known, the effect of PTH on cytosolic calcium ion ([Ca2+]i) mobilization is controversial, one group finding no effect but others reporting various increases. We investigated the effects on [Ca2+]i of synthetic rat PTH fragment 1-34 (rPTH(1-34)) and two bovine PTH analogues that inhibit PTH's stimulation of adenylate cyclase (bovine 8,18Nle, 34Tyr-PTH(3-34) and 34Tyr-PTH(7-34]. [Ca2+]i was measured before, during, and after exposure to PTH analogues in perifused, attached osteoblast-like rat osteosarcoma cells (ROS 17/2.8) that had been scrape-loaded with the luminescent photoprotein aequorin. Resting [Ca2+]i was 0.094 +/- 0.056 microM (mean +/- S.D., n = 103) and rose in a time- and dose-specific way after exposure to rPTH(1-34). At 10(-10) M rPTH(1-34), [Ca2+]i rose 100% within 30 s to a plateau; higher concentrations of PTH yielded increasing initial peaks of [Ca2+]i followed by lower plateaus. At 10(-6) M, the initial peak was 5-fold basal, or 0.64 +/- 0.07 microM. Both analogues of PTH were at least partial agonists for [Ca2+]i mobilization and did not reduce peak [Ca2+]i when co-perifused with rPTH(1-34). However, the analogues did reduce significantly rPTH(1-34)-induced cAMP accumulation and did not increase cAMP accumulation by themselves. Thus, rPTH(1-34) strongly mobilizes [Ca2+]i in ROS 17/2.8 cells, at near-physiologic concentrations. Failure of the PTH analogues to block the effect of PTH on [Ca2+]i while inhibiting the effect on cAMP accumulation suggests separate pathways for PTH activation of adenylate cyclase and mobilization of calcium.  相似文献   

20.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) produced by growth factors and mitogens have been studied using aequorin-loaded Swiss 3T3 cells. Decreasing free Ca2+ in the external medium by using EGTA had no significant effect on the increase in [Ca2+]i produced by vasopressin, bradykinin, bombesin or prostaglandin E2, but reduced the increase in [Ca2+]i produced by platelet derived growth factor (PDGF) by 58%, by prostaglandin E1 44% and by prostaglandin F2 alpha 47%. The dihydropyridine Ca2+-channel antagonist nifedipine at 10 microM inhibited the [Ca2+]i response to PDGF by 41% in both the presence of and in the absence of external Ca2+. Methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (BAY K8644), a Ca2+-channel agonist, at 10 microM produced an increase in [Ca2+]i and decreased the [Ca2+]i response to PDGF by 39%. Nifedipine did not block 45Ca2+ uptake or release by inositol 1,4,5-trisphosphate in saponin-permeabilized Swiss 3T3 fibroblasts but BAY K8644 inhibited 45Ca2+ release by inositol 1,4,5-trisphosphate. The results suggest that the increase in [Ca2+]i caused by PDGF in Swiss 3T3 fibroblasts is due to the influx of external Ca2+ through dihydropyridine sensitive Ca2+ channels, as well as release of internal Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号