首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
免疫亲和层析法纯化单链尿激酶型纤溶酶原激活剂   总被引:1,自引:0,他引:1  
尿激酶原 (Pro urokinase ,pro UK) ,也称单链尿激酶型纤溶酶原激活剂 (Single chainurokinase typeplasminogenactivator,scu PA) ,与t PA一样是第二代溶栓药物。给药时 ,保持无活性的酶原状态 ,只激活被纤维蛋白吸附的纤溶酶原 ,而对游离的纤溶酶原没有作用 ,即只在血栓表面才能活化转变为双链尿激酶 (Two chainurokinase typeplasminogenactivator,tcu PA或UK) ,因而具有较高的特异性溶血栓作用[1 ] 。尿激酶原…  相似文献   

2.
体内存在两种纤溶酶原激活剂(plasminogen activator, PA):血液中生理性的组织型纤溶酶原激活剂(t PA)及尿中的尿激酶型纤溶酶原激活剂(u PA)。它们通过将纤溶酶原转变成有活性的纤溶酶而启动纤溶过程使血栓溶解。目前模拟体内纤溶过程以纤维蛋白为底物的PA物质活性测定方法有纤维蛋白溶圈法和发光分析法,但这两种方法不能  相似文献   

3.
溶栓剂研究的新进展   总被引:4,自引:0,他引:4  
近年来对溶栓剂的研究取得了很好的成果 ,主要集中在单链尿激酶型纤溶酶原激活剂 (scu PA) ,组织型纤溶酶原激活剂 (t PA) ,葡萄球菌激酶 (SAK)等 ,对分子进行设计改造 ,保留它们高效的溶栓功能同时赋予新的功能。在对分子空间结构域和活性功能区分析的基础上 ,研制出更有效的、更安全的溶栓制剂具有广阔的发展前景。  相似文献   

4.
纤溶酶原在金黄色葡萄球菌感染中的作用   总被引:1,自引:0,他引:1  
金黄色葡萄球菌菌体表面有多种纤溶酶原受体,包括次黄嘌呤单核苷酸脱氢酶、核糖核苷酸还原酶、α-烯醇化酶和3-磷酸甘油醛脱氢酶等,它们均可以与纤溶酶原结合。与细菌结合的纤溶酶原可被宿主的纤溶酶原激活剂(组织型纤溶酶原激活剂和尿激酶型纤溶酶原激活剂)或葡萄菌属的纤溶酶原激活剂(葡激酶)激活为纤溶酶。细菌表面的纤溶酶有利于其降解宿主胞外基质,穿越组织屏障,因此哺乳动物的纤溶酶原可能在金黄色葡萄球菌感染宿主过程中起重要作用。  相似文献   

5.
葡萄球菌激酶作为新型溶栓剂的研究进展   总被引:2,自引:0,他引:2  
近年来对溶栓剂的研究取得了很好的成果,主要集中在单链尿激酶型纤溶酶原激活剂(scuPA),组织型纤溶酶原激活剂(tPA),葡萄球菌激酶(SaK)等。葡萄球菌激酶(SaK)是一种激活溶纤维蛋白的制剂,它与纤溶酶原(Plg)形成1∶1的复合体,使后者转变为纤溶酶(Pli)后激活其他分子变为Pli。从葡激酶的溶栓作用机制,包括与纤溶酶(原)等因子的结合作用,葡激酶的高级结构,抗原性等问题以及近年来有关葡激酶作为新一代溶栓的研究进展进行了综述,并指出进一步利用蛋白质工程,对葡激酶进行分子改造的设想。  相似文献   

6.
纤溶酶原激活剂抑制物2型的结构与功能   总被引:3,自引:0,他引:3  
纤溶酶原激活剂抑制物2型具纤溶抑制活性,是尿激酶特异的抑缺点蛾。uPA在肿瘤浸润过程中起了十分关键的作用,PAI-2亦因此成为当今研究的热点。  相似文献   

7.
尿激酶型纤溶酶原激活剂的研究   总被引:1,自引:0,他引:1  
尿激酶型纤溶酶原激活剂u-PA(urokinase-type plasminogen activator)属于丝氨酸蛋白酶类,能激活细胞外基质中丰富的纤溶酶原生成纤溶酶,从而催化细胞外基质降解,对纤溶和癌细胞侵染及扩散等一系列生理和病理过程中发生的胞外蛋白水解起重要调节作用。 人u-PA基因位于第10号染色体之上,表达产生一个约54kD的单链糖基化多肽——尿激酶原。尿激酶原经纤溶酶在其158位赖氨酸  相似文献   

8.
在单链尿型纤溶酶原激活剂中试生产中 ,用不同的方法对产品蛋白含量进行测定 ,得到的结果常常存在很大差异。通过对紫外法和 Lowry法的比较分析 ,我们认为紫外法更适用于单链尿型纤溶酶原激活剂生产中的产品的蛋白含量测定  相似文献   

9.
2-型纤溶酶原激活抑制剂(PAI-2)是尿激酶型纤溶酶原激活剂的高效专一抑制剂。PAI-2具有较高的稳定性,可以发生自我聚合。PAI-2可与细胞内的细胞型纤溶酶原激活剂、纤连蛋白、谷氨酶胺转移酶等多种分子发生反应。PAI-2与尿激酶型纤深酶原激活剂的反应遵循丝氨酸蛋白酶抑制剂的作用机制,其自我聚合的发生可能遵循环-片层机制。PAI-2在肿瘤的侵润和扩散、皮肤组织受伤和治疗、炎症以及多种疾病的发生过  相似文献   

10.
【背景】长孢葡萄穗霉菌(Stachybotrys longispora) FG216是一株稀有海洋真菌,其次生代谢产物FGFC1具有纤溶活性。进行S. longispora FG216的基因组序列分析,将充实和促进海洋微生物功能基因和次生代谢产物合成生物学的基础研究和应用研究。【目的】解析S. longispora FG216的基因组序列,分析基因组生物功能和同源相似性关系,分析次生代谢产物纤溶活性化合物FGFC1的相关基因。【方法】基于Illumina HiSeq高通量测序平台对S. longispora FG216菌株进行De Novo测序,使用SSPACE、Augustus等软件进行组装、编码基因预测、基因功能注释、物种共线性分析以及预测FGFC1次生代谢产物合成基因簇。【结果】S. longispora FG216的基因组测序总长度为45622830bp,共得到605个Scaffold,GC含量为51.31%,注释预测得到13329个编码基因和169个非编码RNA。基因组测序数据提交至国家微生物科学数据中心(编号为NMDC60016264),其中13 053、8 422、8 460、7 714和2 847个基因分别能够在NR、KEGG、KOG、GO和CAZy数据库匹配到注释信息。比较基因组学分析发现,Stachybotrys具有保守性,核心基因占基因家族总数目的71.44%,S. longispora FG216与S. chlorohalonata IBT 40285的相似性最高;同时,预测得到101个次生代谢产物合成基因簇,其中18个基因簇与已知的化合物相匹配。通过antiSMASH预测,Cluster57是编码合成FGFC1母核结构异吲哚啉酮的基因簇,与S.chlorohalonataIBT40285中的基因簇相似度为40%。【结论】海洋稀有真菌S.longisporaFG216的基因组信息已上传至国家微生物科学数据中心公开使用,为Stachybotrys种属的研究提供了重要的参考意义,同时发现了S. longispora FG216次生代谢产物纤溶活性化合物FGFC1母核部分编码基因是Cluster 57。  相似文献   

11.
The reciprocal activation of plasminogen and prourokinase (pro-u-PA) is an important mechanism in the initiation and propagation of local fibrinolytic activity. We have found that a bacterial lipopeptide compound, surfactin C (3-20 microM), enhances the activation of pro-u-PA in the presence of plasminogen. This effect accompanied increased conversions of both pro-u-PA and plasminogen to their two-chain forms. Surfactin C also elevated the rate of plasminogen activation by two-chain urokinase (tcu-PA) while not affecting plasmin-catalyzed pro-u-PA activation and amidolytic activities of tcu-PA and plasmin. The intrinsic fluorescence of plasminogen was increased, and molecular elution time of plasminogen in size-exclusion chromatography was shortened in the presence of surfactin C. These results suggested that surfactin C induced a relaxation of plasminogen conformation, thus leading to enhancement of u-PA-catalyzed plasminogen activation, which in turn caused feedback pro-u-PA activation. Surfactin C was active in enhancing [125I]fibrin degradation both by pro-u-PA/plasminogen and tcu-PA/plasminogen systems. In a rat pulmonary embolism model, surfactin C (1 mg/kg, i.v.) elevated 125I plasma clot lysis when injected in combination with pro-u-PA. The present results provide first evidence that pharmacological relaxation of plasminogen conformation leads to enhanced fibrinolysis in vivo.  相似文献   

12.
Reciprocal activation of prourokinase (pro-u-PA) and plasminogen is an important mechanism in the initiation and propagation of local fibrinolytic activity. We found that glucosyldiacylglycerol (GDG) enhanced the reciprocal activation by 1.5- to 2-fold at 0.7-16 microM, accompanying increased conversions of both zymogens to active two-chain forms. The reciprocal activation system consists of (i) plasminogen activation by pro-u-PA to form plasmin, (ii) pro-u-PA activation by the resulting plasmin to form two-chain u-PA (tcu-PA), and (iii) plasminogen activation by the resulting tcu-PA. Whereas GDG minimally affected steps (ii) and (iii) in isolated systems, it markedly enhanced step (i) in the absence of the conversion of pro-u-PA to tcu-PA. GDG significantly increased the intrinsic fluorescence of pro-u-PA (6.7%), but not that of tcu-PA or plasminogen. The large change in intrinsic fluorescence suggests that GDG selectively affects pro-u-PA to alter its conformation, and this mechanism may account for enhancement of its intrinsic plasminogen activator activity.  相似文献   

13.
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).  相似文献   

14.
A modern data review on the importance of fibrinolysis system is given. A considerable success has been scored during the study of molecular parameters of fibrinolysis system: the plasminogen, plasmin, its inhibitors, plasminogen activators and the mechanism of activation system have been characterized. The entrance of A, K, C, P and PP vitamins has been established to be necessary for the normal functioning of the fibrinolysis system; the dependence of the blood fibrinolytic activity upon the initial plasminogen content and concentration of its activators in blood has been revealed. The plasminogen activator depletion in tissues has been shown to be one of the reasons of some pathological states development, especially at cardiovascular diseases. The increase of fibrinolysis level by the active fibrinolytic ferment injection in blood has a medical effect at thrombosis. The ferment fibrinolysin received in the laboratory is successfully used in clinical practice. Some other activators of fibrinolytic system: tricholysine and longolytin from the culture of saprophyte fungi, plasminogen activator from the pig heart and the cells culture of the calf kidney have been received and are being studied.  相似文献   

15.
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.  相似文献   

16.
We isolated a novel protease that converts plasminogen to angiostatin-like fragments (BL-angiostatins) from a culture of Bacillus megaterium A9542 through a single-step chromatography on CM-cellulose. The protease, designated bacillolysin MA (BL-MA), belongs to a family of neutral metalloproteinases based on the nucleotide sequence of its gene. At an enzyme:substrate ratio of 1:540, BL-MA cleaved human plasminogen mainly at Ser441-Val442 to form BL-angiostatin and miniplasminogen with a K(m) of 3.0 +/- 0.8 microM and a k(cat) of 0.70 +/- 0.09 s(-1). The resulting BL-angiostatins inhibited the proliferation, migration, and tube formation of vascular endothelial cells at concentrations of 1-10 microg/ml. Although BL-MA failed to activate plasminogen, it increased urokinase-catalyzed activation of plasminogen caused by production of miniplasminogen, which is highly susceptible to activation. In addition, BL-MA was active in converting prourokinase, prothrombin, coagulation factor X, and protein C to their active forms. BL-MA enhanced both the clotting of human plasma and clot dissolution in the presence of prourokinase. Thus, BL-MA affects blood coagulation and fibrinolysis systems and can be used to produce angiostatin-like plasminogen fragments and active serine proteases of human plasma.  相似文献   

17.
The major opportunistic pathogen Staphylococcus aureus utilizes the human fibrinolytic system for invasion and spread via plasmin(ogen) binding and non-proteolytic activation. Because S. aureus secretes several proteases recently proposed as virulence factors, we explored whether these enzymes could add to the activation of the host's fibrinolytic system. Exposure of human pro-urokinase [pro-uPA (where uPA is urokinase-type plasminogen activator)] to conditioned growth media from staphylococcal reference strains results in an EDTA-sensitive conversion of the single-chain zymogen into its two-chain active form, an activity not observed in an aureolysin-deficient strain. Using purified aureolysin, we verified the capacity of this thermolysin-like metalloprotease to activate pro-uPA, with a 2.6 x 10(3) M(-1) x s(-1) catalytic efficiency. Moreover, activation also occurs in the presence of human plasma, as well as in conditioned growth media from clinical isolates. Finally, we establish that aureolysin (i) converts plasminogen into angiostatin and mini-plasminogen, the latter retaining its capacity to be activated by uPA and to hydrolyse fibrin, (ii) degrades the plasminogen activator inhibitor-1, and (iii) abrogates the inhibitory activity of alpha(2)-antiplasmin. Altogether, we propose that, in parallel with the staphylokinase-dependent activation of plasminogen, aureolysin may contribute significantly to the activation of the fibrinolytic system by S. aureus, and thus may promote bacterial spread and invasion.  相似文献   

18.
It has been established that fibrinolytically active enzyme longolytine isolated from the culture fluid of the saprophyte fungus Arthrobotrys longa at intravenous injection favours the prolonged increase of the plasma fibrinolytic properties as well as activation of endogenic plasminogen. Maximum values of fibrinolytic activity have been marked in 5 and 30 min after enzyme intravenous injection. The plasminogen activity is high in 120 min. The fibrinolysis indexes--fibrinolytic activity of the euglobulin fraction and amount of plasminogen activator--in 3,5 and 5 times higher than in vitro at intravenous injection. The activation of coagulation system does not occur.  相似文献   

19.
目的:对来自海洋软珊瑚的链霉菌6-1(Streptomyces variabilis strain 6-1)进行次级代谢产物的分离和鉴定,寻找具有生物活性的化合物,为人类健康服务。方法:采用液体培养基对分自海洋软珊瑚Scleronephthya sp中的链霉菌6-1(Streptomyces variabi-lis strain 6-1)进行发酵培养,用乙酸乙酯对发酵液进行萃取;采用半制备高效液相色谱(semi-preparative HPLC)分离方法对乙酸乙酯萃取物进行分离纯化,得到单体化合物;运用电喷雾质谱(ESI-MS)、核磁共氢振(1H NMR)、核磁共振碳谱(13C NMR)和物理性质对所得单体化合物进行结构鉴定。结果:从海洋链霉菌6-1(strain 6-1)发酵液的乙酸乙酯萃取物中分离得到3个单体化合物,分别鉴定为:7,4'-二羟基异黄酮(1)、5,7,4'-三羟基异黄酮(2)和丁烯酸内酯-Ⅰ(3)。结论:丁烯酸内酯-Ⅰ是从链霉菌属首次分离得到,化合物1和2均是从Streptomyces variabilis中首次分离得到;变异链霉菌6-1(Streptomyces variabilis strain 6-1)可以作为活性化合物3(丁烯酸内酯-Ⅰ)的重要来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号