首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The action of sialidases on substrates containing O-acetylsialic acids   总被引:6,自引:0,他引:6  
O-Acetyl substitution of sialic acids in glycoconjugates reduces the rate of action of sialidases on these substrates. A plasma glycoprotein fraction and an erythrocyte ganglioside containing 4-O-acetylsialic acids were isolated and characterized from equine blood, and a sialyllactose preparation with Neu5,9Ac2 was purified from rat urine. Using the novel substrates II3Neu4Ac5Gc-LacCer and II3Neu5,9Ac2-Lac the influence of individual mono-O-acetylated sialic acids on bacterial and viral sialidases could be clearly shown. This extends and clarifies observations with glycoproteins containing mixtures of mono-, di- and higher O-acetylated sialic acids with substitution at the hydroxyls on carbons 4, 7, 8 and 9. A 4-O-acetyl substitution in sialic acids blocks the action of bacterial sialidases for substrates containing these derivatives, while viral enzymes show low but significant activity, reflected in Km and Vmax values. A small reduction in bacterial sialidase activity was observed for II3Neu5,9Ac2-Lac relative to II3Neu5Ac-Lac in agreement with kinetic analysis. Newcastle disease virus sialidase showed a 50% reduction in hydrolysis rate for the 9-O-acetylated substrate and ten-fold reductions of both Km and Vmax values.  相似文献   

2.
We found that the hepatopancreas of oyster, Crassostrea virginica, contained a sialidase capable of releasing Neu5Gc from the novel polysialic acid chain (-->5-O(glycolyl)Neu5Gcalpha2-->)n more efficiently than from the conventional type of polysialic acid chains, (-->8Neu5Acalpha2-->)n, or (-->8Neu5Gcalpha2-->)n. We have partially purified this novel sialidase and compared its reactivity with that of microbial sialidases using four different sialic acid dimers, Neu5Gcalpha2-->5-O(glycolyl)Neu5Gc (Gg2), Neu5Acalpha2-->8Neu5Ac (A2), Neu5Gcalpha2-->8Neu5Gc (G2), and KDNalpha2-->8KDN (K2) as substrates. Hydrolysis was monitored by high performance anion-exchange chromatography with a CarboPac PA-100 column and pulsed amperometric detection, the method by which we can accurately quantitate both the substrate (sialiac acid dimers) and the product (sialic acid monomers). The oyster sialidase effectively hydrolyzed Gg2 and K2, whereas A2 and G2 were poor substrates. Neu5Ac2en but not KDN2en effectively inhibited the hydrolysis of Gg2 by the oyster sialidase. Likewise, the hydrolysis of K2 by the oyster sialidase was inhibited by a cognate inhibitor, KDN2en, but not by Neu5Ac2en. Using the new analytical method we found that Gg2 was hydrolyzed less efficiently than A2 but much more readily than G2 by Arthrobacter ureafaciens sialidase. This result was at variance with the previous report using the thiobarbituric acid method to detect the released free sialic acid [Kitazume, S., et al. (1994) Biochem. Biophys. Res. Commun. 205, 893-898]. In agreement with previous results, Gg2 was a poor substrate for Clostridium perfringens sialidase, while K2 was refractory to all microbial sialidases tested. Thus, the oyster sialidase is novel and distinct from microbial sialidases with regards to glycon- and linkage-specificity. This finding adds an example of the presence of diverse sialidases, in line with the diverse sialic acids and sialic acid linkages that exist in nature. The new sialidase should become useful for both structural and functional studies of sialoglycoconjugates.  相似文献   

3.
By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.  相似文献   

4.
Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that Streptococcus pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.  相似文献   

5.
Migration of O-acetyl groups in N,O-acetylneuraminic acids   总被引:6,自引:0,他引:6  
Highly purified N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2), N-acetyl-7-O-acetylneuraminic acid (Neu5,7Ac2) and N-acetyl-7,9-di-O-acetylneuraminic acid (Neu5,7,9Ac3) were used to study spontaneous migrations of acetyl groups between hydroxyl groups. The techniques applied involved thin-layer chromatography, gas-liquid chromatography/mass spectrometry, high-performance liquid chromatography and 360-MHz 1H-NMR spectroscopy. It was found that at pH values at which no significant de-O-acetylation is observed: (a) Neu5,7Ac2 can easily be transformed into Neu5,9Ac2, (b) Neu5,7,9Ac3 yields an equilibrium of Neu5,7,9Ac3 and Neu5,8,9Ac3 in a molar ratio of approximately 1:1, and (c) Neu4,5Ac2 does not give rise to O-acetyl migrations. The importance of these findings is discussed in terms of the biosynthesis of O-acetylated sialic acids.  相似文献   

6.
7.
R Schauer  G Reuter  S Stoll 《Biochimie》1988,70(11):1511-1519
Sialate 9(4)-O-acetylesterases (EC 3.1.1.53) have been isolated from equine liver, bovine brain and influenza C virus. In this latter case, the esterase represents the receptor-destroying enzyme of the virus. The kinetic properties of these enzymes were determined with Neu5,9Ac2 and in part with 4-methylumbelliferyl acetate and Neu5,9Ac2-lactose. The Km values vary between 0.13 and 24 mM and the Vmax values from 0.55 to 11 U/mg of protein. The pH optima are in the range of 7.4-8.5, the molecular masses at 56,500 and 88,000 Da. In addition to a fast hydrolysis found for aromatic acetates, such as 4-methylumbelliferyl acetate or 4-nitrophenyl acetate, N-acetyl-9-O-acetylneuraminic acid is de-O-acetylated at the highest relative rate. Other substituents at the 9-position, such as lactoyl residues, or acetyl groups at other positions within the side chain are not hydrolyzed. Neu4,5Ac2, however, is a substrate for all 3 enzymes. The hydrolysis rates of this ester function, which renders sialic acids resistant to the action of sialidases, vary from 3 to 100% relative to Neu5,9Ac2. Whereas Neu5,9Ac2-lactose is hydrolyzed by the bovine and viral esterases, other O-acetylated sialic acids in glycoconjugates are only attacked by the enzyme from influenza C virus and not by that from bovine brain. The esterase from horse liver also releases 4-O-acetyl groups from equine submandibular gland mucin. By incubation with appropriate substrates and inhibition studies, carboxylesterase, amidase and choline esterase activities were excluded, as well as the cleavage of other acyls, e.g., butyryl groups. Thus, the enzymes investigated belong to the acetylesterases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The development of sialidase inhibitors is an area of continuing interest due to their potential use as therapeutic agents to combat viral and bacterial infections. Herein, we report our studies involving the sialidase from the pathogen Vibrio cholerae, through the modelling, synthesis and biological evaluation of mimetics of 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enonic acid (Neu5Ac2en, 1), a naturally occurring sialidase inhibitor. These mimetics are O- and S-glycosides of N-acetyl-D-glucosaminuronic acid in which the aglycone portion effectively replaces the C-6 glycerol side chain of Neu5Ac2en (1). The choice of aglycones was aided by use of the X-ray crystal structure of V. cholerae sialidase complexed with Neu5Ac2en (1). All Neu5Ac2en mimetics tested were found to inhibit V. cholerae sialidase as determined using a standard fluorometric assay.  相似文献   

9.
Sialic acids from the erythrocyte (RBC) membrane of a patient suffering from polycythemia vera, a malignant orphan disorder of hematopoietic cells, was studied using GC/MS. We found that the sialic acid diversity of these membranes was drastically reduced since only four entities were identified: Neu5Ac (91.5%) and its 1,7 lactone Neu5Ac1,7L (7.5%) which is absent in normal RBC, Neu4,5Ac(2) (0.50%) and Neu4,5Ac(2) 9Lt (0.50%); in normal RBC, Neu5,7Ac(2), Neu5,9Ac(2), Neu5Ac9Lt, Neu5Ac8S and Neu, as well as traces of Kdn, were also present. Neu5Gc and its O-alkylated or O-acetylated derivatives, which are considered by various authors as cancer markers, were not detected.  相似文献   

10.
Vibrio cholerae neuraminidase (VCNA) plays a significant role in the pathogenesis of cholera by removing sialic acid from higher order gangliosides to unmask GM1, the receptor for cholera toxin. We previously showed that the structure of VCNA is composed of a central beta-propeller catalytic domain flanked by two lectin-like domains; however the nature of the carbohydrates recognized by these lectin domains has remained unknown. We present here structures of the enzyme in complex with two substrates, alpha-2,3-sialyllactose and alpha-2,6-sialyllactose. Both substrate complexes reveal the alpha-anomer of N-acetylneuraminic acid (Neu5Ac) bound to the N-terminal lectin domain, thereby revealing the role of this domain. The large number of interactions suggest a relatively high binding affinity for sialic acid, which was confirmed by calorimetry, which gave a Kd approximately 30 microm. Saturation transfer difference NMR using a non-hydrolyzable substrate, Neu5,9Ac2-2-S-(alpha-2,6)-GlcNAcbeta1Me, was also used to map the ligand interactions at the VCNA lectin binding site. It is well known that VCNA can hydrolyze both alpha-2,3- and alpha-2,6-linked sialic acid substrates. In this study using alpha-2,3-sialyllactose co-crystallized with VCNA it was revealed that the inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) was bound at the catalytic site. This observation supports the notion that VCNA can produce its own inhibitor and has been further confirmed by 1H NMR analysis. The discovery of the sialic acid binding site in the N-lectin-like domain suggests that this might help target VCNA to sialic acid-rich environments, thereby enhancing the catalytic efficiency of the enzyme.  相似文献   

11.
The presence of Neu5Ac on promastigotes of Leishmania donovani, the causative organism of Indian visceral leishmaniasis, has been reported recently. Here we report the occurrence of Neu5Ac as a major component on amastigotes, as well as Neu5Gc, Neu5,9Ac2 and Neu9Ac5Gc as indicated by fluorimetric high performance liquid chromatography and gas liquid chromatography/electron impact mass spectrometry. Furthermore, binding studies with Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), and various Siglecs, showed the presence of both (alpha2 --> 6)- and (alpha2 --> 3)-linked sialic acids; their binding was reduced after sialidase pretreatment. Western blotting of amastigote membrane glycoproteins with SNA demonstrated the presence of two sialoglycoconjugates of Mr values of 164000 and 150000. Similarly, binding of MAA demonstrated the presence of five distinct sialoglycans corresponding to molecular masses of 188, 162, 136, 137 and 124 kDa. Achatinin-H, a lectin that preferentially identifies 9-O-acetylated sialic acid (alpha2 --> 6)-linked to GalNAc, demonstrated the occurrence of two 9-O-acetylated sialoglycans with Mr 158000 and 150000, and was corroborated by flow cytometry; this binding was abolished by recombinant 9-O-acetylesterase pretreatment. Our results indicate that Neu5Ac [(alpha2 --> 6)- and (alpha2 --> 3)-linked], as well as Neu5Gc and their 9-O-acetyl derivatives, constitute components of the amastigote cell surface of L. donovani.  相似文献   

12.
Li Y  Cao H  Yu H  Chen Y  Lau K  Qu J  Thon V  Sugiarto G  Chen X 《Molecular bioSystems》2011,7(4):1060-1072
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.  相似文献   

13.
Sialic acids present on human colonic mucins are highly O-acetylated, however, little is known about the underlying enzymatic activity required for O-acetylation in this tissue. Here we report on the substrate specificity, subcellular localization and characterization of the sialate-7(9)-O-acetyltransferase in normal human colonic mucosa. Using CMP-Neu5Ac, the most efficient acceptor substrate of all those tested, the enzymatic activity was found to be optimal at 37 degrees C, with a pH optimum of 7.0. Activity was also found to be dependent on protein, CMP-Neu5Ac (Km: 59.2 microM) and AcCoA (Km: 6.1 microM) concentrations, as well as membrane integrity. The enzyme's activity could be inhibited by CoA with a Ki of 11.9 microM. In addition, enzymatic activity was found to be localized in the Golgi-enriched membrane fraction. The nature of the O-acetylated products formed were verified with the aid of chromatographic and enzymatic techniques. The main product was 9-O-acetylated Neu5Ac, with a significant amount of oligo-O-acetylated Neu5Ac also being detected. The utilization of CMP-Neu5Ac as the acceptor substrate was confirmed by the isolation and characterization of the putative product, CMP-Neu5,9Ac2, using ion-exchange chromatography. The ability of CMP-Neu5,9Ac2 to act as a sialic acid donor for sialyltransferases represents the conclusive demonstration for the formation of CMP-Neu5,9Ac2.  相似文献   

14.
Argüeso P  Sumiyoshi M 《Glycobiology》2006,16(12):1219-1228
Sialic acids comprise a large family of derivatives of neuraminic acid containing methyl, acetyl, sulfate, and phosphate among other groups, which confer specific physicochemical properties (e.g., hydrophobicity and resistance to hydrolases) to the molecules carrying them. Several years ago, a monoclonal antibody, designated H185, was developed, which binds to cell membranes of human corneal, conjunctival, laryngeal, and vaginal epithelia and whose distribution is altered on the ocular surface of patients with keratinizing disease. Recent findings using immunoprecipitation and immunodepletion techniques have demonstrated that, in human corneal epithelial cells, the H185 antigen is carried by the membrane-associated mucin MUC16. In this study, we show that the H185 epitope on human corneal cells and in tear fluid is an O-acetylated sialic acid epitope that can be selectively hydrolyzed in an enzyme-concentration-dependent manner by sialidase from Arthrobacter ureafaciens and to a lesser extent by sialidases from Newcastle disease virus, Clostridium perfringens, and Streptococcus pneumoniae. Binding of the H185 antibody was impaired by treatment of tear fluid with a recombinant 9-O-acetylesterase from influenza C virus. Two O-acetyl derivatives, Neu5,7Ac(2) and Neu5,9Ac(2), were identified in human tear fluid by fluorometric high-performance liquid chromatography (HPLC) and electrospray mass spectrometry (MS). Immunoprecipitation of the H185 epitope from human corneal epithelial cells revealed that Neu5,9Ac(2) was the major derivative on the mucin isolate. These results indicate that exposed wet-surfaced epithelia are decorated with O-acetyl sialic acid derivatives on membrane-associated mucins and suggest that O-acetylation on cell surfaces may protect against pathogen infection by preventing degradation of membrane-associated mucins.  相似文献   

15.
Saturation transfer difference (STD) (1)H NMR experiments were used to probe the epitope binding characteristics of the sialidase [EC 3.2.1.18] from the bacterium Vibrio cholerae, the causative agent of cholera. Binding preferences were investigated for N-acetylneuraminic acid (Neu5Ac, 1), the product of the sialidase catalytic reaction, for the known sialidase inhibitor 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enoic acid (Neu5Ac2en, 2), and for the uronic acid-based Neu5Ac2en mimetic iso-propyl 2-acetamido-2,4-dideoxy-alpha-L-threo-hex-4-enopyranosiduronic acid (3), in which the native glycerol side-chain of Neu5Ac2en is replaced with an O-iso-propyl ether. The STD experiments provided evidence, supporting previous studies, that Neu5Ac (1) binds to the sialidase as the alpha-anomer. Docking experiments using DOCK (version 4.0.1) revealed further information regarding the binding characteristics of the enzyme active site in complex with Neu5Ac2en (2) and the Neu5Ac2en mimetic (3), indicating an expected dominant interaction of the acetamide moiety with the protein.  相似文献   

16.
Sialyl-linkage specificity of sialidases of the human influenza A virus strains, A/Aichi/2/68 (H3N2) and A/PR/8/34 (H1N1) were studied using natural and synthetic gangliosides. The sialidase of the A/Aichi/2/68 strain hydrolyzed the terminal Neu5Acalpha2-3Gal sequence but not the Neu5Acalpha2-3 linkage on the inner Gal of GM1a, which is a ganglioside that has the gangliotetraose chain (Galbeta1-3GalNAcbeta1-4- (Neu5Acalpha2-3)Galbeta1++ +-4Glcbeta1-Cer). The sialidase hydrolyzed the Neu5Ac on the inner Gal of GM2, which had a shorter gangliotriose chain. GM4, which had the shortest chain (Neu5Acalpha2-3Galbeta1-Cer) of the gangliosides, had a lower substrate specificity. The N1 and N2 sialidase subtypes of the human influenza A virus had no significant variation in their substrate specificity for the gangliosides. Analysis of 11 synthetic gangliosides, which contained various ceramide or sialic acid moieties, demonstrated that A/Aichi/2/68 (H3N2) sialidase recognized the ceramide and sialic acid moiety and the length and structure of the sialyl sugar chain.   相似文献   

17.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

18.
KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid), a sialic acid analog, has been found to be widely distributed in nature. Despite the structural similarity between KDN and Neu5Ac, alpha-ketosides of KDN are refractory to conventional sialidases. We found that the hepatopancreas of the oyster, Crassostrea virginica, contains two KDN-cleaving sialidases but is devoid of conventional sialidase. The major sialidase, KDN-sialidase, effectively cleaves alpha-ketosidically linked KDN and also slowly cleaves the alpha-ketosides of Neu5Ac. The minor sialidase, KDNase, is specific for alpha-ketosides of KDN. We were able to separate these two KDN-cleaving enzymes using hydrophobic interaction and cation-exchange chromatographies. The rate of hydrolysis of 4-methylumbelliferyl-alpha-KDN (MU-KDN) by KDN-sialidase is 30 times faster than that of MU-Neu5Ac in the presence of 0.2 M NaCl, whereas in the absence of NaCl this ratio is only 8. KDNase hydrolyzes MU-KDN over 500 times faster than MU-Neu5Ac and is not affected by NaCl. KDN-sialidase purified to electrophoretically homogeneous form was found to have a molecular mass of 25 kDa and an isoelectric point of 8.4. One of the three tryptic peptides derived from KDN-sialidase contains the consensus motif, SXDXGXTW, that has been found in all conventional sialidases. Kinetic analysis of the inhibition of the hydrolysis of MU-KDN and MU-Neu5Ac by 2, 3-dehydro-2-deoxy-KDN (KDN2-en) and 2,3-dehydro-2-deoxy-(Neu5Ac2-en) suggests that KDN-sialidase contains two separate active sites for the hydrolysis of KDN and Neu5Ac. Both KDN-sialidase and KDNase effectively hydrolyze KDN-G(M3), KDNalpha2-->3Gal beta1-->4Glc, KDNalpha2-->6Galbeta1-->4Glc, KDNalpha2-->6-N-acetylgalactosaminitol, KDNalpha2-->6(KDNalpha2-->3)N-acetylgalactosaminitol, and KDNalpha2-->6(GlcNAcbeta1-->3)N-acetylgalactosaminitol. However, only KDN-sialidase also slowly hydrolyzes G(M3), Neu5Acalpha2-->3Galbeta1-->4Glc, and Neu5Acalpha2-->6Galbeta1-->4Glc. These two KDN-cleaving sialidases should be useful for studying the structure and function of KDN-containing glycoconjugates.  相似文献   

19.
New ganglioside analogs that inhibit influenza virus sialidase   总被引:1,自引:0,他引:1  
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac alpha(2-S-6)Glc beta(1-1)Ceramide (1) and the GM3 analog Neu5Ac alpha(2-S-6)Gal beta(1-4)Glc beta(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8 x 10(-6) and 1.5 x 10(-5) M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac alpha(2-S-6)Gal beta(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki = 1.0 x 10(-4) M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were non-hydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases from Clostridium perfringens and Arthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.  相似文献   

20.
Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号