首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Derivatives of Escherichia coli C were previously described for succinate production by combining the deletion of genes that disrupt fermentation pathways for alternative products (ldhA::FRT, adhE::FRT, ackA::FRT, focA-pflB::FRT, mgsA, poxB) with growth-based selection for increased ATP production. The resulting strain, KJ073, produced 1.2 mol of succinate per mol glucose in mineral salts medium with acetate, malate, and pyruvate as significant co-products. KJ073 has been further improved by removing residual recombinase sites (FRT sites) from the chromosomal regions of gene deletion to create a strain devoid of foreign DNA, strain KJ091(DeltaldhA DeltaadhE DeltaackA DeltafocA-pflB DeltamgsA DeltapoxB). KJ091 was further engineered for improvements in succinate production. Deletion of the threonine decarboxylase (tdcD; acetate kinase homologue) and 2-ketobutyrate formate-lyase (tdcE; pyruvate formate-lyase homologue) reduced the acetate level by 50% and increased succinate yield (1.3 mol mol(-1) glucose) by almost 10% as compared to KJ091 and KJ073. Deletion of two genes involved in oxaloacetate metabolism, aspartate aminotransferase (aspC) and the NAD(+)-linked malic enzyme (sfcA) (KJ122) significantly increased succinate yield (1.5 mol mol(-1) glucose), succinate titer (700 mM), and average volumetric productivity (0.9 g L(-1) h(-1)). Residual pyruvate and acetate were substantially reduced by further deletion of pta encoding phosphotransacetylase to produce KJ134 (DeltaldhA DeltaadhE DeltafocA-pflB DeltamgsA DeltapoxB DeltatdcDE DeltacitF DeltaaspC DeltasfcA Deltapta-ackA). Strains KJ122 and KJ134 produced near theoretical yields of succinate during simple, anaerobic, batch fermentations using mineral salts medium. Both may be useful as biocatalysts for the commercial production of succinate.  相似文献   

2.
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.  相似文献   

3.
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirect carbon flow into malate even in the presence of fumarase. Further deletions were needed to inactivate malic enzymes (typically gluconeogenic) and prevent conversion to pyruvate. However, deletion of these genes (sfcA and maeB) resulted in the unexpected accumulation of D-lactate despite the prior deletion of mgsA and ldhA and the absence of apparent lactate dehydrogenase activity. Although the metabolic source of this D-lactate was not identified, lactate accumulation was increased by supplementation with pyruvate and decreased by the deletion of either pyruvate kinase gene (pykA or pykF) to reduce the supply of pyruvate. Many of the gene deletions adversely affected growth and cell yield in minimal medium under anaerobic conditions, and volumetric rates of malate production remained low. The final strain (XZ658) produced 163 mM malate, with a yield of 1.0 mol (mol glucose(-1)), half of the theoretical maximum. Using a two-stage process (aerobic cell growth and anaerobic malate production), this engineered strain produced 253 mM malate (34 g liter(-1)) within 72 h, with a higher yield (1.42 mol mol(-1)) and productivity (0.47 g liter(-1) h(-1)). This malate yield and productivity are equal to or better than those of other known biocatalysts.  相似文献   

4.
A homobutanol fermentation pathway was engineered in a derivative of Escherichia coli B (glucose [glycolysis] => 2 pyruvate + 2 NADH; pyruvate [pyruvate dehydrogenase] => acetyl-CoA + NADH; 2 acetyl-CoA [butanol pathway enzymes] + 4 NADH => butanol; summary stoichiometry: glucose => butanol). Initially, the native fermentation pathways were eliminated from E. coli B by deleting the genes encoding for lactate dehydrogenase (ldhA), acetate kinase (ackA), fumarate reductase (frdABCD), pyruvate formate lyase (pflB), and alcohol dehydrogenase (adhE), and the pyruvate dehydrogenase complex (aceEF-lpd) was anaerobically expressed through promoter replacement. The resulting strain, E. coli EG03 (ΔfrdABCD ΔldhA ΔackA ΔpflB Δ adhE ΔpdhR ::pflBp6-aceEF-lpd ΔmgsA), could generate 4 NADH for every glucose oxidized to two acetyl-CoA through glycolysis and the pyruvate dehydrogenase complex. However, EG03 lost its ability for anaerobic growth due to the lack of NADH oxidation pathways. When the butanol pathway genes that encode for acetyl-CoA acetyltransferase (thiL), 3-hydroxybutyryl-CoA dehydrogenase (hbd), crotonase (crt), butyryl-CoA dehydrogenase (bcd, etfA, etfB), and butyraldehyde dehydrogenase (adheII) were cloned from Clostridium acetobutylicum ATCC 824, and expressed in E. coli EG03, a balanced NADH oxidation pathway was established for homobutanol fermentation (glucose => 4 NADH + 2 acetyl-CoA => butanol). This strain was able to convert glucose to butanol (1,254 mg l(-1)) under anaerobic condition.  相似文献   

5.
6.
琥珀酸是一种具有重要应用价值的生物基平台化合物。对大肠杆菌focA-pflB ldhA突变株QQS101在严格厌氧条件下生长和葡萄糖代谢能力进行了考察,比较分析了葡萄糖与大肠杆菌混合酸发酵产物的单位碳的还原程度,认为非严格厌氧条件有利于QQS101发酵葡萄糖积累琥珀酸,进一步对有氧生长碳源进行了对比试验的结果表明,以木糖支持有氧生长,QQS101摇瓶发酵39 h消耗葡萄糖37.6 g/L,琥珀酸的产量达到31.01 g/L,摩尔产率为1.258 mol Succinate/mol Glucose。发酵过程中,丙氨酸的添加能够提高琥珀酸的摩尔产率。  相似文献   

7.
8.
Redox and energy balance plays a key role in determining microbial fitness. Efforts to redirect bacterial metabolism often involve overexpression and deletion of genes surrounding key central metabolites, such as pyruvate and acetyl-coA. In the case of metabolic engineering of Escherichia coli for succinate production, efforts have mainly focused on the manipulation of key pyruvate metabolizing enzymes. E. coli AFP111 strain lacking ldhA, pflB and ptsG encoded activities accumulates acetate and ethanol as well as shows poor anaerobic growth on rich and minimal media. To address these issues, we first deleted genes (adhE, ackA-pta) involved in byproduct formation downstream of acetyl-CoA followed by the deletion of iclR and pdhR to activate the glyoxylate pathway. Based on data from these studies, we hypothesized that the succinate productivity was limited by the insufficient ATP generation. Genome-scale thermodynamics-based flux balance analysis indicated that overexpression of ATP-forming PEPCK from Actinobacillus succinogenes in an ldhA, pflB and ptsG triple mutant strain could result in an increase in biomass and succinate flux. Testing of this prediction confirmed that PEPCK overexpression resulted in a 60% increase in biomass and succinate formation in the ldhA, pflB, ptsG mutant strain.  相似文献   

9.
Three E. coli strains, named VAL22, VAL23, and VAL24, were engineered at the level of mixed-acid fermentation pathways to improve culture performance under transient anaerobic conditions. VAL22 is a single mutant with an inactivated poxB gene that codes for pyruvate oxidase which converts pyruvate to acetate. VAL23 is a double mutant unable to produce lactate and formate due to deletions of the ldhA and pflB genes that code for lactate dehydrogenase and pyruvate-formate lyase, respectively. VAL24 is a triple mutant with ldhA and pflB deleted and poxB inactivated. Engineered strains were cultured under oscillating dissolved oxygen tension (DOT) in a scale-down system, to simulate gradients occurring in large-scale bioreactors. Kinetic and stoichiometric parameters of constant (10%) and oscillating DOT cultures of the engineered strains were compared with those of the parental strain, W3110. All strains expressed recombinant green fluorescent protein (GFP) as a protein model. Mutant strains showed improved specific growth rate, reduced by-product formation, and reduced specific glucose uptake rate compared to the parental strain, when cultured under oscillating DOT. In particular, lactate and formate production was abolished and acetate accumulation was reduced by 9-12%s. VAL24 showed the best performance, as specific growth and GFP production rates, and maximum GFP concentration were not affected by DOT gradients and were at least twofold higher than those of W3110 under constant DOT. Under oscillating DOT, VAL24 wasted about 40% less carbon into fermentation by-products than W3110. It was demonstrated that, although E. coli responds rapidly to DOT fluctuations by deviating to fermentative metabolism, such pathways can be eliminated as they are not necessary for bacterial survival during the short circulation times typical of large-scale cultures. The approach shown here opens new possibilities for designing metabolically engineered strains, with reduced sensitivity to DOT gradients and improved performance under typical conditions of large-scale cultures.  相似文献   

10.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

11.
Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61–0.67 mol (mole glucose)?1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)?1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)?1 and productivity of 0.38 g L?1 h?1.  相似文献   

12.
Effect of constitutive expression of the aceEF-lpdA operon genes coding for the enzymes of NAD+ reducing pyruvate dehydrogenase complex on the anaerobic production of succinic acids from glucose by recombinant Escherichia coli strains was studied. Basic producer strains were obtained by inactivation of the main pathways for synthesis of acetic and lactic acids by deletion of the genes ackA, pta, poxB, and ldhA (SGMO.1) in E. coli strain MG 1655 cells and additional introduction of the Bacillus subtilis pyruvate carboxylase (SG M0.1 [pPYC]). A constitutive expression of the genes aceEF-lpdA in derivatives of the basic strains SGM0.1 PL-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] was provided by replacing the native regulatory region of the operon with the lambda phage PL promoter. Molar yields of succinic acid in anaerobic glucose fermentation by strains SGM0.1 P(L)-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] exceeded the corresponding yields displayed by several control strains (exceeded considerably in the case of the strains with a pyruvate carboxylase activity). It is concluded that an increase in the succinic acid production by strain SGM0.1 PL-aceEF-lpdA [pPYC] as compared with the strains SGM0.1 and SGM0.1 [pPYC], which synthesize this substance in the reductive tricarboxylic acid cycle, is determined by activation of the glyoxylate shunt.  相似文献   

13.
An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production.  相似文献   

14.
This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.  相似文献   

15.
Most reported efforts to enhance production of the industrially valuable specialty chemical succinate have been done under anaerobic conditions, where E. coli undergoes mixed-acid fermentation. These efforts have often been hampered by the limitations of NADH availability, poor cell growth, and slow production. An aerobic succinate production system was strategically designed that allows E. coli to produce and accumulate succinate efficiently and substantially as a product under absolute aerobic conditions. Mutations in the tricarboxylic acid cycle (sdhAB, icd, iclR) and acetate pathways (poxB, ackA-pta) of E. coli were created to construct the glyoxylate cycle for aerobic succinate production. Experiments in flask studies showed that 14.28 mM of succinate could be produced aerobically with a yield of 0.344 mole/mole using 55 mM glucose. In aerobic batch reactor studies, succinate production rate was faster, reaching 0.5 mole/mole in 24 h with a concentration of 22.12 mM; further cultivation showed that succinate production reached 43 mM with a yield of 0.7. There was also substantial pyruvate and TCA cycle C(6) intermediate accumulation in the mutant. The results suggest that more metabolic engineering improvements can be made to this system to make aerobic succinate production more efficient. Nevertheless, this aerobic succinate production system provides the first platform for enhancing succinate production aerobically in E. coli based on the creation of a new aerobic central metabolic network.  相似文献   

16.
17.
Various Escherichia coli mutant strains designed for succinate production under aerobic conditions were characterized in chemostat. The metabolite profiles, enzyme activities, and gene expression profiles were studied to better understand the metabolic network operating in these mutant strains. The most efficient succinate producing mutant strain HL27659k was able to achieve a succinate yield of 0.91 mol/mol glucose at a dilution rate of 0.1/h. This strain has the five following mutations: sdhAB, (ackA-pta), poxB, iclR, and ptsG. Four other strains involved in this study were HL2765k, HL276k, HL2761k, and HL51276k. Strain HL2765k has mutations in sdhAB, (ackA-pta), poxB and iclR, strain HL276k has mutations in sdhAB, (ackA-pta) and poxB, strain HL2761k has mutations in sdhAB, (ackA-pta), poxB and icd, and strain HL51276k has mutations in iclR, icd, sdhAB, (ackA-pta) and poxB. Enzyme activity data showed strain HL27659k has substantially higher citrate synthase and malate dehydrogenase activities than the other four strains. The data also showed that only iclR mutation strains exhibited isocitrate lyase and malate synthase activities. Gene expression profiles also complemented the studies of enzyme activity and metabolites from chemostat cultures. The results showed that the succinate synthesis pathways engineered in strain HL27659k were highly efficient, yielding succinate as the only major product produced under aerobic conditions. Strain HL27659k was the only strain without pyruvate accumulation, and its acetate production was the least among all the mutant strains examined.  相似文献   

18.
Two metabolically engineered E. coli strains HL2765k and HL27659k, while capable of producing succinate from glucose with high yields, are not able to grow and produce succinate on sucrose. Consequently, the pUR400 plasmid containing scrK, Y, A, B, and R genes was introduced into HL2765k and HL27659k, respectively. Shake flask culture studies showed that the resulting strains can utilize sucrose; the strain HL2765k pUR400 and HL27659k pUR400 can produce succinate aerobically with a molar yield of 0.78 ± 0.02 mol/mol and 1.35 ± 0.13 mol/mol, respectively. On introduction of the plasmid pHL413, which encodes the heterologous pyruvate carboxylase (PYC) from Lactococcus lactis, the molar succinate yield increased to 1.60 ± 0.01 mol of succinate per mole of sucrose by the HL2765k pUR400 pHL413 strain and to 1.84 ± 0.10 by the HL27659k pUR400 pHL413 strain. In aerobic batch bioreactor studies, the succinate production rate was faster, and succinate production reached 101.83 mM with a yield of 1.90 when dissolved oxygen (DO) was controlled at 40 ± 7%. In addition, the results showed that DO had an important effect on succinate production by influencing PYC activity. This work demonstrates the possibility of producing succinate aerobically using sucrose as the carbon source.  相似文献   

19.
The microbial production of L-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of L-(+) and D-(-) isomers. For most uses of PLA, the L-(+) isomer is more abundant. As an approach to reduce costs associated with biocatalysis (complex nutrients, antibiotics, aeration, product purification, and waste disposal), a recombinant derivative of Escherichia coli W3110 was developed that contains five chromosomal deletions (focA-pflB frdBC adhE ackA ldhA). This strain was constructed from a D-(-)-lactic acid-producing strain, SZ63 (focA-pflB frdBC adhE ackA), by replacing part of the chromosomal ldhA coding region with Pediococcus acidilactici ldhL encoding an L-lactate dehydrogenase. Although the initial strain (SZ79) grew and fermented poorly, a mutant (SZ85) was readily isolated by selecting for improved growth. SZ85 exhibited a 30-fold increase in L-lactate dehydrogenase activity in comparison to SZ79, functionally replacing the native D-lactate dehydrogenase activity. Sequencing revealed mutations in the upstream, coding, and terminator regions of ldhL in SZ85, which are presumed to be responsible for increased L-lactate dehydrogenase activity. SZ85 produced L-lactic acid in M9 mineral salts medium containing glucose or xylose with a yield of 93 to 95%, a purity of 98% (based on total fermentation products), and an optical purity greater than 99%. Unlike other recombinant biocatalysts for L-lactic acid, SZ85 remained prototrophic and is devoid of plasmids and antibiotic resistance genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号