首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Global climate change is projected to increase the incidence of heat waves, their magnitude and duration resulting in insects experiencing increasing environmental stress in both natural and managed ecosystems. While studies on insect thermal tolerance are rapidly increasing, variation across developmental or juvenile stress cross-stage effects within and across generations remain largely unexplored. Yet in holometabolous insects, heat stress at an early developmental stage may influence performance and survival during later stages. Here, we investigated the effects of pupal mild heat stress on the performance of laboratory-reared adult Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) measured as longevity, critical thermal maximum (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT) and chill coma recovery time (CCRT). Pupal heat stress significantly influenced performance of B. dorsalis adults resulting in impaired longevity and heat tolerance (CTmax and HKDT) in both sexes with improved and compromised cold tolerance (CTmin and CCRT) in females and males, respectively. These findings highlight the role of juvenile stages in mediating stress responses at adult stages. For B. dorsalis, pupal heat stress largely compromised thermal tolerance implying that the species has limited potential to shift its geographic range in heat prone areas. Significant benefits in cold tolerance in females following heat stress may help in improving survival in the cold in the short-term despite restricted activity to the same traits in males. This study suggests that basal heat tolerance and not short-term compensatory thermal plasticity following heat stress may have aided the recent invasion of B. dorsalis in African landscapes.  相似文献   

2.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

3.
Insect cold tolerance is both phenotypically-plastic and evolutionarily labile, but the mechanisms underlying this variation are uncertain. Chill-susceptible insects lose ion and water homeostasis in the cold, which contributes to the development of injuries and eventually death. We thus hypothesized that more cold-tolerant insects will better maintain ion and water balance at low temperatures. We used rapid cold-hardening (RCH) and cold acclimation to improve cold tolerance of male Gryllus pennsylvanicus, and also compared this species to its cold-tolerant relative (Gryllus veletis). Cold acclimation and RCH decreased the critical thermal minimum (CTmin) and chill coma recovery time (CCR) in G. pennsylvanicus, but while cold acclimation improved survival of 0 °C, RCH did not; G. veletis was consistently more cold-tolerant (and had lower CCR and CTmin) than G. pennsylvanicus. During cold exposure, hemolymph water and Na+ migrated to the gut of warm-acclimated G. pennsylvanicus, which increased hemolymph [K+] and decreased muscle K+ equilibrium potentials. By contrast, cold-acclimated G. pennsylvanicus suffered a smaller loss of ion and water homeostasis during cold exposure, and this redistribution did not occur at all in cold-exposed G. veletis. The loss of ion and water balance was similar between RCH and warm-acclimated G. pennsylvanicus, suggesting that different mechanisms underlie decreased CCR and CTmin compared to increased survival at 0 °C. We conclude that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold, and that this is consistent for both phenotypic plasticity and evolved cold tolerance.  相似文献   

4.
South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive global insect pest of tomato, Solanum lycopersicum (Solanaceae). In nature, pests face multiple overlapping environmental stressors, which may significantly influence survival. To cope with rapidly changing environments, insects often employ a suite of mechanisms at both acute and chronic time-scales, thereby improving fitness at sub-optimal thermal environments. For T. absoluta, physiological responses to transient thermal variability remain under explored. Moreso, environmental effects and physiological responses may differ across insect life stages and this can have implications for population dynamics. Against this background, we investigated short and long term plastic responses to temperature of T. absoluta larvae (4th instar) and adults (24–48 h old) from field populations. We measured traits of temperature tolerance vis critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)], heat knockdown time (HKDT), chill coma recovery time (CCRT) and supercooling points (SCP). Our results showed that at the larval stage, Rapid Cold Hardening (RCH) significantly improved CTmin and HKDT but impaired SCP and CCRT. Heat hardening in larvae impaired CTmin, CCRT, SCP, CTmax but not HKDT. In adults, both heat and cold hardening generally impaired CTmin and CTmax, but had no effects on HKDT, SCP and CCRT. Low temperature acclimation significantly improved CTmin and HKDT while marginally compromising CCRT and CTmax, whereas high temperature acclimation had no significant effects on any traits except for HKDT in larvae. Similarly, low and high temperature acclimation had no effects on CTmin, SCPs and CTmax, while high temperature acclimation significantly compromised adult CCRT. Our results show that larvae are more thermally plastic than adults and can shift their thermal tolerance in short and long timescales. The larval plasticity reported here could be advantageous in new envirnments, suggesting an asymmetrical ecological role of larva relative to adults in facilitating T. absoluta invasion.  相似文献   

5.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

6.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   

7.
The incidence and severity of environmental stressors associated with global climate change are increasing and insects frequently face variability in temperature and moisture regimes at variable spatio-temporal scales. Coincidental with this, is increased thermal and hydric stress on insects as warming increases vapour pressure deficit (VPD), the drying power of the air. While the effects of mean temperatures on fitness are widely documented, fluctuations in both temperature and relative humidity (RH) are largely unexplored. Here, we investigated the effects of dynamic temperature and RH fluctuations (around the mean [28°C; 65% RH]) on low and high thermal tolerance of laboratory-reared adult invasive Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), measured as critical thermal minima (CTmin), critical thermal maxima (CTmax), chill coma recovery time (CCRT) and heat knockdown time (HKDT). Our results show that increased environmental amplitude significantly influenced low and high temperature responses and varied across traits tested. The highest amplitude (δ12°C; 28% RH) compromised CTmin, CCRT and HKDT traits while enhancing CTmax. Similarly, acclimation to δ3°C; 7% RH compromised both low (CTmin and CCRT) and high (CTmax and HKDT) fitness traits. Variations in fitness reported here indicate significant roles of combined thermal and moisture fluctuations on B. dorsalis fitness suggesting caveats that are worthy considering when predicting species responses to climate change. These results are significant for B. dorsalis population phenology, management, quantifying vulnerability to climate variability and may help modelling future biogeographical patterns.  相似文献   

8.
To assess the trade‐offs associated with cold and heat tolerance, selection experiments were conducted on the rate of recovery from chill‐ and heat‐coma using Drosophila melanogaster. Flies were treated with cold and heat to induce coma, and those that showed rapid or slow recovery from coma were selected. The lines selected for rapid (or slow) recovery from chill‐coma also showed rapid (slow) recovery from heat‐coma, although such a correlation was not observed in the lines selected for the rate of recovery from heat‐coma. On the other hand, survival after cold was enhanced in both lines selected for rapid and slow recovery from chill‐coma, and survival after heat was enhanced in both lines selected for rapid and slow recovery from heat‐coma. It was assumed that cold and heat treatments to induce coma caused some damages to flies and those that were tolerant to cold or heat were unintentionally selected in the present coma‐based selection. Only a weak trade‐off was observed between survival‐based cold and heat tolerance. On the other hand, developmental time was prolonged and desiccation resistance, walking speed, and longevity were reduced in the lines selected for rapid and slow recovery from chill‐ and/or heat‐coma, suggesting that these resistance and life‐history traits are under trade‐offs with cold and/or heat tolerance. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 72–80.  相似文献   

9.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   

10.
Most insects are chill susceptible and will enter a coma if exposed to sufficiently low temperature. This chill coma has been associated with a failure of the neuromuscular system. Insect heart rate (HR) is determined by intrinsic regulation (muscle pacemaker) with extrinsic (nervous and humoral) input. By examining the continually active heart of five Drosophila species with markedly different cold tolerance, we investigated whether cardiac performance is related to the whole animal critical thermal minimum (CTmin). Further, to separate the effects of cold on extrinsic and intrinsic regulators of HR, we measured HR under similar conditions in decapitated flies as well as amputated abdomens of Drosophila montana. Cardiac performance was assessed from break points in HR–temperature relationship (Arrhenius break point, ABP) and from the HR cessation temperature. Among the five species, we found strong relationships for both the HR-ABP and HR cessation temperatures to whole animal CTmin, such that temperate Drosophila species maintained cardiac function at considerably lower temperatures than their tropical congeners. Hearts of amputated abdomens, with reduced extrinsic input, had a higher thermal sensitivity and a significantly lower break point temperature, suggesting that central neuronal input is important for stimulating HR at low temperatures.  相似文献   

11.
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed ‘cross‐tolerance’. The nature and magnitude of cross‐tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross‐tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross‐tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross‐tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross‐resistant than CTmax). The results of this study have two major implications that are of broader importance: (i) that these traits likely co‐evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross‐tolerance.  相似文献   

12.
When ectotherms are exposed to low temperatures, they enter a cold‐induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill‐coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using nuclear magnetic resonance (NMR) spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold‐induced perturbations. The metabolites of cold‐hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations.  相似文献   

13.
14.
Lepidopteran stemborers are the most destructive insect pests of cereal crops in sub‐Saharan Africa. In nature, these insects are often exposed to multiple environmental stressors, resulting in potent impact on their thermal tolerance. Such environmental stressors may influence their activity, survival, abundance and biogeography. In the present study, we investigate the effects of acclimation to temperature, starvation and desiccation on thermal tolerance, measured as critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)] on laboratory‐reared economic pest species Chilo partellus Swinhoe (Lepidoptera: Crambidae), Busseola fusca (Fuller) and Sesamia calamistis Hampson (Lepidoptera: Noctuidae) using established protocols. Low temperature acclimation results in improved CTmin for B. fusca and C. partellus, whereas high temperature acclimation enhances the same trait for B. fusca and S. calamistis. Similarly, high temperature and starvation pretreatment improve CTmax for C. partellus relative to S. calamistis and B. fusca. In addition, starvation and desiccation pretreatments improve CTmin for all stemborer species. Furthermore, rapid cold‐hardening (RCH) enhancs CTmin for B. fusca and C. partellus, whereas rapid heat‐hardening (RHH) improves the same trait for C. partellus. However, RCH and RHH impair CTmax for all stemborer species. These findings show differential thermal tolerances after exposure to heterogeneous environmental stress habitats. Chilo partellus, of exotic origin, shows a higher magnitude of basal thermal tolerance plasticity relative to the indigenous African species S. calamistis and B. fusca. This indicates that C. partellus may have a fitness and survival advantage under climate‐induced heterogeneous environments, and also have a greater chance for geographical range expansion and invasion success compared with the indigenous B. fusca and S. calamistis.  相似文献   

15.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

16.
17.
Cold tolerance is an important trait directly related to survival and hence fitness. In the present study, the link is addressed between cold tolerance and body size, which is associated with many key fitness traits, at both the intra‐ and interspecific levels. Specifically, chill coma recovery time, as a metric of cold tolerance, is examined in five related flour beetle species (four of them belonging to the genus Tribolium), two additional Tribolium castaneum Herbst populations selected for higher temperatures, and a mutant showing reduced body size. Recovery times are negatively correlated with the species average body size but not within each species. Females usually recover faster than males, although this difference is significant in only a single species, and is unrelated to body size. Repeating the experimental procedure with the same individuals, after 2 days in isolation with a limited amount of food, results in longer recovery times. Therefore, even if cold acclimation takes place, its influence appears to be diminished by the deleterious effects associated with the experimental procedure. Hence, the findings provide evidence for an association between body size and cold tolerance in the genus Tribolium, with larger species recovering faster from chill than smaller species. By contrast, the smalleyed flour beetle Palorus ratzeburgii Wissmann does not follow this pattern. Additionally, a population of T. castaneum selected for the highest temperature takes longer to recover from chill coma, indicating a trade‐off between cold and heat adaptations and not to a cross‐protection effect, as sometimes demonstrated.  相似文献   

18.
Global change is shifting both temperature patterns and the geographic distribution of pathogens, and infection has already been shown to substantially reduce host thermal performance, potentially placing populations at greater risk that previously thought. But what about individuals that are able to successfully clear an infection? Whilst the direct damage a pathogen causes will likely lead to reductions in host's thermal tolerance, the response to infection often shares many underlying pathways with the general stress response, potentially acting as a buffer against subsequent thermal stress. Here, by exposing Drosophila melanogaster to heat‐killed bacterial pathogens, we investigate how activation of a host's immune system can modify any response to both heat and cold temperature stress. In a single focal population, we find that immune activation can improve a host's knockdown times during heat shock, potentially offsetting some of the damage that would subsequently arise as an infection progresses. Conversely, immune activation had a detrimental effect on CTmax and did not influence lower thermal tolerance as measured by chill‐coma recovery time. However, we also find that the influence of immune activation on heat knockdown times is not generalizable across an entire cline of locally adapted populations. Instead, immune activation led to signals of local adaptation to temperature being lost, erasing the previous advantage that populations in warmer regions had when challenged with heat stress. Our results suggest that activation of the immune system may help buffer individuals against the detrimental impact of infection on thermal tolerance; however, any response will be population specific and potentially not easily predicted across larger geographic scales, and dependent on the form of thermal stress faced by a host.  相似文献   

19.
The effects of sub-lethal low temperatures on insect physiology and behaviour are important determinants of insect activity including foraging, mating, and predation avoidance. A substantial body of research seeks to relate the temperatures at which these activities are compromised to both, climatic conditions at species range limits and underlying physiological processes. The interpretation of this research is complicated by confusion in the names and definition of the responses measured and their associated temperature thresholds. The development of the nomenclature and explanations of the underlying physiological causes are reviewed in order to elucidate the correct sequence of responses/thresholds and associated terminologies. The results of this analysis indicate that: (1) chill coma is a clearly defined, reversible physiological state characterised by the absence of electrophysiological activity. (2) The onset of chill coma begins when low temperatures begin to impair insect behaviour and physiology, and is punctuated by a series of behavioural and/or physiological thresholds or responses. These include the temperatures at which (i) spontaneous movements cease, (ii) coordination is lost to the degree that locomotion becomes impossible, and (iii) chill coma is entered. (3) Confusion has arisen because (a) the term ‘onset of chill coma’ has been used to describe all three of these responses/thresholds and (b) the term CTmin has entered the insect literature from the vertebrate literature. These issues are discussed and a potential solution is proposed to provide clarity and consistency in the future literature.  相似文献   

20.
  1. Neochetina eichhorniae is the most widely established biocontrol agent on water hyacinth populations around South Africa. However, some N. eichhorniae populations have failed to adequately control their host population, specifically those exposed to cold conditions.
  2. The aim of this study was to determine whether two climatically distinct populations of N. eichhorniae in South Africa differ in their low‐temperature physiology, which tests whether local‐climate adaptation has occurred.
  3. We estimated weevil CTmin, LLT50, SCP, and SCP mortality using standard approaches. Contrary to expectation based on climatic thermal profiles at the two sites, weevils from the warm locality ((mean ± SE) CTmin = 5.0 °C ± 0.2, LLT50 = ?11.3 °C ± 0.03, SCP = ?15.8 °C ± 0.6) were able to maintain activity and tolerate colder temperatures than the weevils from the colder site (CTmin = 6.0 °C ± 0.5, LLT50 = ?10.1 °C ± 0.1, SCP = ?12.9 °C ± 0.8).
  4. These contradictory outcomes are likely explained by the poor nutrient quality of the plants at the cold site, driving low‐temperature performance variation that overrode any macroclimate variation among sites. The cold site weevils may also have adapted to survive wide‐temperature variability, rather than perform well under very cold conditions. In contrast, the mass‐reared population of insects from the warm site has likely adapted to the consistent conditions that they experience over many years in confinement.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号