首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.  相似文献   

2.
Dry grasslands are among the most threatened plant communities of Central Europe. We explore the time scale of spontaneous regeneration of dry grasslands on abandoned fields in an area of Central Europe, where also ancient grassland communities occur (Saxony-Anhalt, Germany). On three permanent plots with shallow soils we monitored during 10 years change of species composition and analysed whether spontaneous succession leads to assemblages similar to the ancient dry grassland communities in the direct surroundings. We found that dry grassland species are able to invade the permanent plots and during the 10 years of succession the number of dry grassland species increased. But even after 10 years there was a clear difference between ancient dry grassland communities and the assemblages on the permanent plots. Our findings suggest two important conclusions: First, spontaneous succession on abandoned fields is a cheap possibility for the conservation of some dry grassland species, at least on shallow soils. Second, the time scale of the regeneration process, however, is rather long. Hence, conservation of remnants of ancient grassland communities needs special attention.  相似文献   

3.
Heavy-metal content is assumed to be the most important edaphic factor that determines vegetation composition on contaminated soil. We compared the effects of heavy metals on species composition and species richness in the heavy metal-dry grassland complex of the Bottendorf Hills (Central Germany) with those of other environmental factors. Based on 206 relevés, we distinguished nine communities of the classesKoelerio-Corynephoretea andFestuco-Brometea. Four communities in which the metallophytesArmeria maritima subsp.halleri andMinuartia verna subsp.hercynica occurred with high frequency were classified as heavy metal subassociations of four different dry grassland associations because of the dominance of dry grassland species. We measured the soil content of copper, zinc and lead, and the carbonate content, C/N ratio, pH and conductivity of the soil, soil depth and incident radiation per site. The first axis resulting from a DCA was positively correlated with the cover and height of the herb layer, the soil depth and soil carbonate content, and negatively with the soil content of copper, the proportion of rocks, the soil C/N ratio and incident radiation per site. The number of vascular plants, bryophyte and lichen species per plot increased with pH up to 7.5 and then decreased slightly. Species richness increased with carbonate content and conductivity of the soil and decreased with the soil C/N ratio. Heavy metal content of the soil and species richness were not correlated. The occurrence of the metallophytes was strongly related to the copper content of the soil. In conclusion our study has shown that heavy metal content is not necessarily the main factor determining the total composition and richness of grasslands on soil containing heavy metals. Heavy metal grasslands are not necessarily floristically distinct from “normal” dry grasslands.  相似文献   

4.
Interannual climate variation alters functional diversity through intraspecific trait variability and species turnover. We examined these diversity elements in three types of grasslands in northern China, including two temperate steppes and an alpine meadow. We evaluated the differences in community‐weighted means (CWM) of plant traits and functional dispersion (FDis) between 2 years with contrasting aridity in the growing season. Four traits were measured: specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen concentration (LNC), and the maximum plant height (H). CWM for SLA of the alpine meadow increased in the dry year while that of the temperate steppe in Qinghai showed opposing trends. CWM of LDMC in two temperate steppes became higher and CWM of LNC in all grasslands became lower in the dry year. Compared with the wet year, FDis of LDMC in the alpine meadow and FDis of LNC in the temperate steppe in Qinghai decreased in the dry year. FDis of H was higher in the dry year for two temperate steppes. Only in the temperate steppe in Qinghai did the multi‐FDis of all traits experience a significant increase in the dry year. Most of the changes in CWM and FDis between 2 years were explained by intraspecific trait variation rather than shifts in species composition. This study highlights that temporal intraspecific trait variation contributes to functional responses to environmental changes. Our results also suggest it would be necessary to consider habitat types when modeling ecosystem responses to climate changes, as different grasslands showed different response patterns.  相似文献   

5.
Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically‐rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum. Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator community. Management of grasslands should aim to maximize the pollinator feeding resource, as well as maintain plant communities. Retaining waterlogged ground may enhance the number of hoverflies with semiaquatic larvae.  相似文献   

6.
Calcareous grasslands have become severely threatened habitats in Europe. The aim of this study was to investigate the changes in plant species richness, and functional and phylogenetic diversity in northern Estonian calcareous (alvar) grasslands resampled after 90 years of land-use change. Functional traits characterizing species that have benefited most from decreased habitat area and altered environmental conditions, and additional species that can potentially inhabit the remaining grassland patches were identified. Also changes in the relative amount of habitat-specific species were studied to detect a possible decrease in habitat integrity. Although grasslands in the studied region had lost most of their original area (~90 %), species richness had substantially increased due to invasion by more competitive, nutrient-demanding native species. Functional diversity generally increased, whereas phylogenetic diversity showed no response to altered conditions. Overall, these grasslands have lost their integrity as calcareous grassland habitat type in the region, because the relative amount of habitat-specific characteristic species has declined significantly. However, although the grasslands have transformed to a ‘hybrid’ habitat type and restoration to their previous state is likely not reasonable, such degraded species-rich grassland fragments can still be recognized as important habitats to preserve high local biodiversity and several characteristic species of calcareous grasslands. As current landscapes consist of an increasing number of hybrid and novel communities, new tools to supplement traditional conservation or restoration practices are necessary to recognize and maintain regions and habitats of high local biodiversity.  相似文献   

7.

Background

Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions.

Methodology/Findings

We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands.

Conclusions

Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality only at the community level.  相似文献   

8.
Declines of West European farmland birds have been associated with intensive agricultural practices, while in Central and Eastern European countries grasslands still harbour a diverse and unique bird community. However, in these countries comparative studies on the effects of agricultural intensity on biodiversity are virtually missing. We compared bird communities of paired extensively and intensively grazed cattle pastures in three different regions of the Hungarian Great Plain. The influence of grazing intensity, landscape and regional effects were tested on the abundance and species richness of two ecological groups of bird species (grassland and non-grassland birds), as well as on the abundance of the three commonest grassland bird species (Skylark, Yellow wagtail, Corn bunting) in linear mixed models. We found significant effects of grazing intensity on the abundance of grassland birds, which were more abundant on the extensive sites, whereas no effects were found on non-grassland birds. This could be explained by a closer dependence of grassland birds on grasslands for nesting and foraging, whereas non-grassland birds only used grasslands opportunistically for foraging. Landscape effect was shown on grassland bird abundance, but not on non-grassland birds. The regions did affect only the species richness of grassland birds. At species level, the effect of management was significant for the three commonest grassland species, which were more abundant on the extensive fields in all regions. Additionally, on Skylark abundance landscape and regional effects were also shown. These findings suggest that conservation of biodiversity in agricultural systems requires the consideration of landscape perspective to apply the most adequate management.  相似文献   

9.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

10.
Plant functional traits are widely used to predict community productivity. However, they are rarely used to predict individual plant performance in grasslands. To assess the relative importance of traits compared to environment, we planted seedlings of 20 common grassland species as phytometers into existing grassland communities varying in land‐use intensity. After 1 year, we dug out the plants and assessed root, leaf, and aboveground biomass, to measure plant performance. Furthermore, we determined the functional traits of the phytometers and of all plants growing in their local neighborhood. Neighborhood impacts were analyzed by calculating community‐weighted means (CWM) and functional diversity (FD) of every measured trait. We used model selection to identify the most important predictors of individual plant performance, which included phytometer traits, environmental conditions (climate, soil conditions, and land‐use intensity), as well as CWM and FD of the local neighborhood. Using variance partitioning, we found that most variation in individual plant performance was explained by the traits of the individual phytometer plant, ranging between 19.30% and 44.73% for leaf and aboveground dry mass, respectively. Similarly, in a linear mixed effects model across all species, performance was best predicted by phytometer traits. Among all environmental variables, only including land‐use intensity improved model quality. The models were also improved by functional characteristics of the local neighborhood, such as CWM of leaf dry matter content, root calcium concentration, and root mass per volume as well as FD of leaf potassium and root magnesium concentration and shoot dry matter content. However, their relative effect sizes were much lower than those of the phytometer traits. Our study clearly showed that under realistic field conditions, the performance of an individual plant can be predicted satisfyingly by its functional traits, presumably because traits also capture most of environmental and neighborhood conditions.  相似文献   

11.
Upland fringes of the White Carpathians (Czech Republic) are known to support grasslands with the world’s highest local plant species richness. We investigated whether this unusually high plant richness has a parallel in snail communities, whether patterns of species composition of snail and plant communities in grasslands co-vary and how they are affected by local environment and landscape history. We compared plant and snail communities of dry to mesic grasslands in three neigh bouring regions: (1) hilly lowland of the Central Moravian Carpathians, (2) upland fringes and (3) upland of the White Carpathians. Both snail and plant communities exhibited a strong gradient in species composition associated with altitude, annual temperature and precipitation, soil calcium and pH. However, there was no correlation between local species richness of plants and snails in individual plots. The upland fringes of the White Carpathians were richest in snail species, probably due to intermediate environmental conditions, supporting the occurrence of species with contrasting environmental requirements. The highest local numbers of plant species were also recorded there, although differences among regions were not significant. The regional species richness of plants was also highest in the upland fringes, whereas that of snails was highest in the hilly lowland. Similarities in the diversity patterns of plants and snails among regions suggest the importance of regional factors for local richness, although local abiotic factors, which are partly correlated with the three regions, also influence local species composition and richness.  相似文献   

12.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

13.
The biodiversity of the Southern Balkans, part of the Mediterranean global biodiversity hot-spot, is threatened by land use intensification and abandonment, the latter causing forest encroachment of formerly open habitats. We investigated the impact of forest encroachment on butterfly species richness, community species composition and the representation of life history traits by repeated seasonal visits of 150 one-hectare sites in five separate regions in three countries—Greece, Bulgaria, and the Republic of Macedonia (FYROM—the Former Yugoslav Republic of Macedonia)— 10 replicates for each habitat type of grasslands, open formations and scrub forest within each region. Grasslands and open formations sites hosted in average more species and more red-listed species than scrub forest, while no pattern was found for numbers of Mediterranean species. As shown by ordination analyses, each of the three habitat types hosted distinct butterfly communities, with Mediterranean species inclining either towards grasslands or open formations. Analysing the representation of life history traits revealed that successional development from grasslands and open formations towards scrub forest shifts the community composition towards species overwintering in earlier stages, having fewer generations per year, and inhabiting large European or Eurosiberian (e.g. northern) ranges; it decreases the representation of Mediterranean endemics. The loss of grasslands and semi-open formations due to forest encroachment thus threatens exactly the species that should be the focus of conservation attention in the Mediterranean region, and innovative conservation actions to prevent ongoing forest encroachment are badly needed.  相似文献   

14.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

15.
Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass.We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.  相似文献   

16.
Temperate calcareous grasslands are characterized by high levels of species richness at small spatial scales. Nevertheless, many species from a habitat‐specific regional species pool may be absent from local communities and represent the ‘dark diversity’ of these sites. Here we investigate dry calcareous grasslands in northern Europe to determine what proportion of the habitat‐specific species pool is realized at small scales (i.e. how the community completeness varies) and which mechanisms may be contributing to the relative sizes of the observed and dark diversity. We test whether the absence of particular species in potentially suitable grassland sites is a consequence of dispersal limitation and/or a low ability to tolerate stress (e.g. drought and grazing). We analysed a total of 1223 vegetation plots (1 × 1 m) from dry calcareous grasslands in Sweden, Estonia and western Russia. The species co‐occurrence approach was used to estimate the dark diversity for each plot. We calculated the maximum dispersal distance for each of the 291 species in our dataset by using simple plant traits (dispersal syndrome, growth form and seed characteristics). Large seed size was used as proxy for small seed number; tall plant height and low S‐strategy type scores were used to characterise low stress‐tolerance. Levels of small‐scale community completeness were relatively low (more species were absent than present) and varied between the grasslands in different geographic areas. Species in the dark diversity were generally characterized by shorter dispersal distances and greater seed weight (fewer seeds) than species in the observed diversity. Species within the dark diversity were generally taller and had a lower tolerance of stressful conditions. We conclude that, even if temperate grasslands have high levels of small‐scale plant diversity, the majority of potentially suitable species in the regional species pool may be absent as a result of dispersal limitation and low stress‐tolerance.  相似文献   

17.
Land‐use change is a major driver of the global loss of biodiversity, but it is unclear to what extent this also results in a loss of ecological traits. Therefore, a better understanding of how land‐use change affects ecological traits is crucial for efforts to sustain functional diversity. To this end we tested whether higher species richness or taxonomic distinctness generally leads to increased functional distinctness and whether intensive land use leads to functionally more narrow arthropod communities. We compiled species composition and trait data for 350 species of terrestrial arthropods (Araneae, Carabidae and Heteroptera) in different land‐use types (forests, grasslands and arable fields) of low and high land‐use intensity. We calculated the average functional and taxonomic distinctness and the rarified trait richness for each community. These measures reflect the range of traits, taxonomic relatedness and number of traits that are observed in local communities. Average functional distinctness only increased significantly with species richness in Carabidae communities. Functional distinctness increased significantly with taxonomic distinctness in communities of all analyzed taxa suggesting a high functional redundancy of taxonomically closely related species. Araneae and Heteroptera communities had the expected lower functional distinctness at sites with higher land‐use intensity. More frequently disturbed land‐use types such as managed grasslands or arable fields were characterized by species with smaller body sizes and higher dispersal abilities and communities with lower functional distinctness or trait richness. Simple recommendations about the conservation of functional distinctness of arthropod communities in the face of future land‐use intensification and species loss are not possible. Our study shows that these relationships depend on the studied taxa and land‐use type. However, for some arthropod groups functional distinctness is threatened by intensification and conversion from less to more frequently disturbed land‐uses.  相似文献   

18.
Semi-natural calcareous grasslands are of great conservation interest because of their high species richness, but they are threatened by land abandonment and nitrogen eutrophication. These plant communities evolved as a result of a long history of human activity, which generated and maintained these habitats by extensive grazing and mowing. Calcareous grasslands are listed as a priority for conservation in the EC Habitats Directive. However, the effects of different management regimes, nitrogen enrichment, and soil-borne pathogens on plant species diversity are less clear for grasslands of the Mediterranean Basin, compared to meadows in Northern and Central Europe. In this study, we assessed the impact of land abandonment, nitrogen enrichment, and fairy-ring fungi on species diversity in semi-natural grasslands found in the Mediterranean Basin by comparing the available literature with findings from recent studies carried out in Central Italy. In a series of field experiments, the cutting of abandoned grassland consistently reduced the living biomass of the dominant perennial grasses, such as Brachypodium rupestre and Bromus erectus, and promoted a rapid increase in species richness and diversity by allowing the establishment of rare species. There was a similar, but less effective, restoration of species diversity and composition in mowed grassland after litter removal. We also show that nitrogen enrichment at levels comparable to atmospheric deposition depresses species diversity, which also hampers the positive effects of litter removal. Our findings are consistent with previous results achieved in Northern and Central Europe, which however, mainly focused on grasslands with intermediate to high primary productivity levels. The limited availability of data from low-productivity, drought-prone Mediterranean grasslands requires further studies to assess the impact of land abandonment and nitrogen eutrophication in such ecosystems. Finally, we discuss the role of fairy-ring fungi in the maintenance of plant diversity in species-rich grassland. We show that fairy-ring fungi (e.g. Agaricus campestris) critically affect the spatial distribution and diversity of coexisting plant species. By killing the dominant perennial herbs, these radially growing plant pathogens produce empty niches for rare, short-lived species, thus affecting the vegetation pattern. Overall, our results are of interest for environmental managers, as they provide guidelines for the restoration of abandoned areas and the conservation of these species-rich habitats.  相似文献   

19.
大气氮沉降影响草地植物物种多样性机制研究综述   总被引:3,自引:0,他引:3  
张世虎  张悦  马晓玉  王聪  马群  杨雪纯  徐婷  马越  郑智 《生态学报》2022,42(4):1252-1261
大气氮沉降对草地生态系统结构和功能的影响已成为全球变化生物学研究重点。大气氮沉降导致草地群落物种多样性降低已成为全球普遍现象,但其生物学机制还不清楚,因此有必要系统梳理大气氮沉降对全球不同草地生态系统的研究结果,以便在氮沉降背景下为我国草地生态系统的研究和管理制定科学决策。系统综述了氮沉降降低草地群落物种多样性的可能机制,主要包括资源竞争排斥、群落更新限制、土壤酸化及其离子毒害、养分失衡、氮素本身的毒害、次生胁迫。氮沉降导致草地物种多样性降低是多种机制综合作用的结果,每种机制在不同时空具有不同的相对贡献。同时,与欧洲酸性土壤草地和美国高草草原相比,我国草地土壤类型和植被属性具有明显差异。因此,应根据我国草地生态系统的特征、不同植物功能利用养分策略,从土壤养分变化、根系养分吸收转运、叶片生理过程等方面的整合研究思路,探讨氮沉降影响我国草地群落物种多样性的生物学机制,为我国草地生态系统的科学管理提供理论依据。  相似文献   

20.
Grasslands belong to the ecologically most relevant habitats in cultural landscapes, but also provide high economic value when used as meadows or pastures. Land-use intensification in grasslands negatively affects plant diversity as well as arthropod communities that depend on plants as food source and habitat, with important consequences for the provision and resilience of ecosystem functioning. In this study, we sampled grassland moth species and investigated whether species composition, diversity and life-history trait characteristics of moth communities respond to the type and intensity of land use, comparing 26 sites in three different regions of Germany. Consistent across the three regions, we found that pastures grazed by cattle, horses or sheep harbour fundamentally different moth communities than meadows (mown and fertilized grasslands). Overall land-use intensity (LUI)—i.e., grazing intensity, amount of fertilizer applied and mowing frequency taken together—significantly reduced abundance and species richness as well as diversity. Some 27.6% of the species showed significant negative responses to LUI. A shift towards generalist life-history traits was observed: in frequently mown and fertilized meadows, rare specialist species were replaced by ubiquist species, i.e., highly reproductive habitat generalists. These results show the sensitivity of moths, an important group of arthropod herbivores and pollinators, to land use change in grassland ecosystems. The functional homogenization of life-history traits in plants along land-use gradients is mirrored by their herbivore consumers, leaving high-intensity grasslands less diverse and potentially less resilient to environmental disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号