首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of novel 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides were investigated as dipeptidyl peptidase IV (DPP-4) inhibitors. Introduction of a 4-phenylthiazol-2-yl group showed highly potent DPP-4 inhibitory activity. Among various derivatives, (3R)-3-amino-N-(4-(4-phenylthiazol-2-yl)-tetrahydro-2H-thiopyran-4-yl)-4-(2,4,5-trifluorophenyl)butanamide 1,1-dioxide (30) reduced blood glucose excursion in an oral glucose tolerance test by oral administration.  相似文献   

2.
Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a-5c) and 2,6-diaminopurines (5d-5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8-10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

3.
In the course of our program for discovery of novel DPP-IV inhibitors, a series of pyrazolo[1,5-a]pyrimidines were found to be novel DPP-IV inhibitors. We identified N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide hydrochloride (4a) and described its pharmacological profiles.  相似文献   

4.
Novel heteroaryl-containing benzamide derivatives were synthesized and screened using an in vitro assay measuring increases in glucose uptake and glucokinase activity stimulated by 10 mM glucose in rat hepatocytes. From a library of synthesized compounds, 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methyl pyridin-2-yl)-benzamide (19e) was identified as a potent glucokinase activator with assays demonstrating an EC50 of 315 nM and the induction of a 2.23 fold increase in glucose uptake. Compound 19e exhibited a glucose AUC reduction of 32% (50 mg/kg) in an OGTT study with C57BL/6J mice compared to 28% for metformin (300 mg/kg). Single treatment of the compound in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity, while in a two-week repeated dose study with ob/ob mice, the compound significantly decreased blood glucose levels with no evidence of hypoglycemia risk. In addition, 19e exhibited favorable pharmacokinetic parameters in mice and rats and excellent safety margins in liver and testicular toxicity studies. Compound 19e was therefore selected as a development candidate for the potential treatment of type 2 diabetes.  相似文献   

5.
Abstract

Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a–5c) and 2,6-diaminopurines (5d–5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8–10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

6.
A novel class of 1-[4-(1H-benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-ureas are described as potent inhibitors of heparanase. Among them are 1,3-bis-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea (7a) and 1,3-bis-[4-(5,6-dimethyl-1H-benzoimidazol-2-yl)-phenyl]-urea (7d), which displayed good heparanase inhibitory activity (IC(50) 0.075-0.27 microM). Compound 7a showed good efficacy in a B16 metastasis model.  相似文献   

7.
A series of 2-alkyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized and evaluated for their 5-HT6 activity. The most potent agonist in this series was 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole with an IC50=7.4 nM in 3H-LSD binding and an EC50=1.0 nM in a functional assay measuring production of cyclic AMP.  相似文献   

8.
Treatment of 2-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)ethanal with malononitrile, cyanoacetamide and 2-cyano-N-(4-methoxyphenyl)acetamide, respectively, in the presence of aluminium oxide yielded 2-cyano-4-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)crotonic acid derivatives. Cyclization with sulfur and triethylamine was performed to synthesize the 2-amino-5-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thiophene-3-carbonic acid derivatives, which were treated with triethyl orthoformate/ammonia and triethyl orthoformate, respectively, to furnish 6-(methyl 2-O-benzyl-4,6-O-benzylidene-3-deoxy-alpha-D-altropyranosid-3-yl)thieno[2.3-d]pyrimidine derivatives. Deprotection in two steps afforded 2-amino-5-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thiophene-3-carbonitrile and 6-(1,6-anhydro-3-deoxy-beta-D-altropyranos-3-yl)thieno[2.3-d]pyrimidine derivatives, respectively.  相似文献   

9.
A facile preparation is described of 3-(indol-3-yl)-2-hydroxy-4-hydroxymethylcyclopent-2-enone and its N-derivatives in 15-40% yields by the degradation of ascorbigen or its N-derivatives in a warm solution of L-ascorbic acid through a sequential domino reaction. The same cyclopentenone derivatives were obtained in 30-40% yields by the condensation of (N-alkylindol-3-yl)glycolic acids with ascorbic acid. 2,6-Dihydroxy-1-(indol-3-yl)hexa-1,4-diene-3-one and 2-hydroxy-4-hydroxymethyl-5-(indol-3-yl)cyclopent-2-enone were identified as intermediates in this reaction.  相似文献   

10.
A series of ethyl 4-(naphthalen-2-yl)-2-oxo-6-arylcyclohex-3-enecarboxylates 8-14 and 4,5-dihydro-6-(naphthalen-2-yl)-4-aryl-2H-indazol-3-ols 15-21 were synthesised and characterised by their spectroscopic data. In vitro microbiological evaluations were carried out for all the newly synthesised compounds 8-21 against clinically isolated bacterial and fungal strains. Compounds 9, 12 and 20 against Staphylococcus aureus, 10, 12, 20 against β-haemolytic streptococcus, 11, 17 against Bacillus subtilis, 12, 16 and 20 against Vibreo cholerae, 13, 16 against Escherichia coli, 13, 16, 18, 19 against Salmonella typhii, 12, 18 against Shigella flexneri, 10 against Salmonella typhii, 10, 13, 17, 18 against Aspergillus flavus, 12, 17, 21 against Aspergillus niger, 12, 15, 17, 18, 20 against Mucor, Rhizopus and Microsporeum gypsuem exhibit potent antimicrobial activity.  相似文献   

11.
The antipsychotic profile of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562) was investigated using the conditioned avoidance test in rats. NRA0562 is a putative "atypical" antipsychotic agent with moderate to high affinities for dopamine D(1), D(2), D(4), 5-hydroxytryptamine(2A) receptors and alpha(1) adrenoceptor. NRA0562 (1 and 3 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response. Likewise other atypical antipsychotics such as risperidone (1 and 3 mg/kg, p.o.) and clozapine (100 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response in rats. In addition, typical antipsychotics, haloperidol (1 and 3 mg/kg, p.o.) potently impaired the conditioned avoidance response.These results suggest that antipsychotic profile of NRA0562 is consistent with profiles of clozapine or risperidone and may be considered an atypical antipsychotic agent.  相似文献   

12.
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.  相似文献   

13.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

14.
A novel series of selective negative allosteric modulators (NAMs) for metabotropic glutamate receptor 5 (mGlu5) was discovered from an isothiazole scaffold. One compound of this series, (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide (24), demonstrated satisfactory pharmacokinetic properties and, following oral dosing in rats, produced dose-dependent and long-lasting mGlu5 receptor occupancy. Consistent with the hypothesis that blockade of mGlu5 receptors will produce analgesic effects in mammals, compound 24 produced a dose-dependent reduction in paw licking responses in the formalin model of persistent pain.  相似文献   

15.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

16.
A series of twenty two derivatives of 3-(1-alkyl/aminoalkyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one and their 2-methylene derivatives were synthesized from naturally abundant cinchonine (I). Tartarate salts of these compounds were prepared and evaluated for spermicidal activity. The most active compounds (24, 27, 34, 36, and 38) showing potent spermicidal activity were further evaluated against different strains of Trichomonas vaginalis, for antimicrobial activity, in HeLa cell lines for cytotoxicity and against Lactobacillus jensenii for eco-safety. The tartarate of 3-(1-pentyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one (27) was found to be more active than N-9 in spermicidal activity.  相似文献   

17.
18.
A series of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazol-2-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (11a-n) and (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazole-1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (12a-n) has been synthesized. The antifungal activity of compounds was evaluated by in vitro agar diffusion and broth dilution assay. Compounds 11d and its positional isomer 12d having 3-trifluoromethyl substitution on the phenyl ring of piperazine demonstrated significant antifungal activity against variety of fungal cultures (Candida spp. C. neoformans and Aspergillus spp.). The compound 12d showed MIC value of 0.12 microg/mL for C. albicans, C. albicans V-01-191A-261 (resistant strain); 0.25 microg/mL for C. tropicalis, C. parapsilosis ATCC 22019 and C. krusei and MIC value of 0.5 microg/mL for C. glabrata, C. krusei ATCC 6258, which is comparable to itraconazole and better than fluconazole. Further, compound 11d showed significant activity (MIC; 0.25-0.5 microg/mL) against Candida spp. and strong anticryptococcal activity (MIC; 0.25 microg/mL) against C. neoformans.  相似文献   

19.
Summary S-[2-Carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptopyruvic acid (I) was chemically synthesized in 15% yield by incubating a reaction mixture oftrans-urocanic acid and 3-fold excess of 3-mercaptopyruvic acid at 45°C for 6 days. The synthesized compound was characterized by fast-atom-bombardment mass spectrometry and high-voltage paper electrophoresis. CompoundI was identified with a product of an enzymatic reaction ofS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-l-cysteine (II) with rat liver homogenate in a phosphate buffer, pH 7.4. CompoundI was degraded toS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-3-mercaptolactic acid (III), a compound previously found in human urine [Kinuta et al. (1994) Biochem J 297: 475–478], by incubation with rat liver homogenate. From these results, we suggest that compoundI is a metabolic intermediate for the formation of compoundIII from compoundII. The present pathway follows a formation of compoundII fromS-[2-carboxy-1-(1H-imidazol-4-yl)ethyl] gluthathione [Kinuta et al. (1993) Biochim Biophys Acta 1157: 192–198], a proposed metabolite ofl-histidine.  相似文献   

20.
A series of N-2-(4-(4-(2-substitutedthiazol-4-yl) piperazin-1-yl)-2-oxoethyl)acetamides were synthesized in an effort to prepare novel atypical antipsychotic agents. The compounds were synthesized by either microwave irradiation technique or by conventional synthesis and were characterized by spectral data (IR, (1)H NMR, and MS) and the purity was ascertained by microanalysis. All the synthesized compounds were screened for their in vivo pharmacological activity in Swiss albino mice. D(2) antagonism studies were performed using climbing mouse assay model and 5-HT(2A) antagonism studies were performed using quipazine induced head twitches in mice. It was observed that none of the new chemical entities exhibited catalepsy. AG 3 was found to be the most active compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号