首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
  1966年   5篇
  1965年   2篇
排序方式: 共有74条查询结果,搜索用时 19 毫秒
1.
2.
The proteins of submitochondrial particles solubilized with 0.1% Triton X-100 were separated by polyacrylamide gel electrophoresis. Hydrolysis of several proteinase substrates was registered directly in the gel after completion of electrophoresis. According to the data obtained the inner mitochondrial membrane contains one or two enzymes which catalyze hydrolysis of cytochrome c as well as one or two enzymes splitting synthetic substrate of trypsin-like proteinases, e. g. N-alpha-benzoyl-L-arginine-p-nitroanilide (BAPA) and N-alpha-benzoyl-L-arginine-beta-naphthylamide (BANA). Submitochondrial particles were shown to catalyze hydrolysis of 3H-labelled cytochrome c. This activity is suppressed by the same inhibitors as the hydrolysis of mitochondrial translation products, i. e. phenyl-methylsulfonylfluoride, p-chloromercuribenzosulfonate, leupeptin and antipain. Presumably these two processes are catalyzed by the same enzyme localized in the inner mitochondrial membrane. Physiological functions of BAPA- and BANA-hydrolyzing enzyme(s) are still unclear.  相似文献   
3.
Degradation of mitochondrial translation products in Saccharomyces cerevisiae mitochondria was studied by selectively labelling these entities in vivo in the presence of cycloheximide and following their fate in isolated mitochondria. One-third to one-half of the mitochondrial translation products are shown to be degraded, depending on the culture growth phase, with an approximate half-life of 35 min. This process is shown to be ATP-dependent, enhanced in the presence of puromycin and inhibited by chloramphenicol. Further, the proteolysis is suppressed by detergents and is insensitive to antisera against yeast proteinases A and B when measured in mitochondria or 'inside-out' submitochondrial particles. It is concluded that the breakdown of mitochondrial translation products is most probably due to the action of endogenous proteinase(s) associated with the mitochondrial inner membrane. This proteinase is inhibited by phenylmethanesulphonyl fluoride, leupeptin, antipain and chymostatin.  相似文献   
4.
Distribution of the activities of some mitochondrial enzymes after sucrose density gradient ultracentrifugation of cell homogenates of S. cerevisiae in the early and late exponential growth phases is studied. It is demonstrated that young yeast cells have a characteristic complex distribution of NADH oxidase (cyanide-sensitive), succinate:ferricyanide-oxidoreductase (or succinate:2,6-dichlorophenol indophenol-oxidoreductase), NADH:2,6-dichlorophenol indophenol-oxidoreductase and cytochrome oxidase activities in sucrose density gradient; the distribution patterns of these activities are different. All the above activities are detected in a single relatively narrow band in mature yeast cells. Similar results are obtained in the experiments with glucose or galactose as a carbon source in the yeast growth media. The Arrhenius plots for NADH oxidase (as well as for succinate:2,6-dichlorophenol indophenol-oxidoreductase) activity do not differ in the case of "light" and "heavy" mitochondrial structures characteristic of yeast cells in the early exponential growth phase. Nevertheless, "light" and "heavy" mitochondrial structures differ with respect of the arrangement of certain respiratory chain components in their membranes NADH-dehydrogenase and cytochrome oxidase). This conclusion is drawn from the results obtained in the study of the interaction of the two types of structures with Fe(CN)6(3-), a non-penetrating ion and the antiserum to yeast mitochondria.  相似文献   
5.
6.
When studying the fate of mammalian apocytochrome P450scc (apo-P450scc) imported in small amounts into isolated yeast mitochondria, we found that it undergoes degradation, this process being retarded if recipient mitochondria are preloaded in vivo (to about 0.2% of total organelle protein) with a fusion protein composed of mammalian adrenodoxin reductase and adrenodoxin (AdR-Ad); in parallel we observed aggregation of apo-P450scc. These effects suggest some overload of Pim1p protease and/or mtHsp70 system by AdR-Ad, as both of them are involved in the degradation of apo-P450scc (see Savel'ev et al. J. Biol. Chem. 273, 20596-20602, 1998). However, under the same conditions AdR-Ad was not able to impede the import of proteins into mitochondria and the development of the mitochondrial respiratory machinery in yeast, the processes requiring the mtHsp70 system and Pim1p, respectively. These data imply that chaperones and Pim1p protease prefer their natural targets in mitochondria to imported foreign proteins.  相似文献   
7.
It has earlier been shown that CYP11A1 (cytochrome P450scc precursor), synthesized in yeast cells, is imported into yeast mitochondria. However, in large part the foreign protein undergoes degradation or aggregates. In this work, we tried to prevent aggregation of CYP11A1 and stimulate its insertion into the mitochondrial inner membrane by substituting cholesterol (a substrate for cytochrome P450scc) for ergosterol in yeast cells. To this end, an ergosterol-deficient Saccharomyces cerevisiae mutant, growing in the presence of cholesterol and expressing a modified bovine CYP11A1 gene, was used. Under defined conditions, the mitochondrial respiratory system developed in this yeast and CYP11A1 with the CoxIV targeting presequence was imported into the mitochondria, being then proteolytically processed. However, substitution of cholesterol for ergosterol did not result in lowered aggregation of the imported CYP11A1 and its increased content in the SMP fraction. Hence, the presence of cholesterol is not instrumental in proper intramitochondrial compartmentalization and folding of CYP11A1.  相似文献   
8.
Mammalian cytochrome P450scc (CYP11A1p) is a pseudointegral protein of the inner membrane of mitochondria with the active center exposed in the matrix. Upon import of the CYP11A1p precursor into yeast mitochondria, only a minor part was incorporated into the inner mitochondrial membrane and acquired catalytic activity (Kovaleva, I. E., Novikova, L. A., Nazarov, P. A., Grivennikov, S. I., and Luzikov, V. N. (2003) Eur. J. Biochem., 270, 222-229). The present work is an attempt to increase the efficiency of this process by substitution of the inherent N-terminal presequence of CYP11A1p by the addressing signal of D-lactate dehydrogenase (D-LD) of the yeast Saccharomyces cerevisiae. D-LD is known to be inserted into the inner membrane of mitochondria through its transmembrane domain located close to the N-terminus of the polypeptide chain in such a way that the protein globule is exposed in the intermembrane space. The hybrid protein D-LD(1-72)-mCYP11A1p synthesized in yeast cells was imported into yeast mitochondria, underwent processing, and was inserted into the inner membrane on the side of the intermembrane space. In the presence of adrenodoxin and adrenodoxin reductase, the hybrid protein exhibited cholesterol side-chain cleavage activity. Thus, CYP11A1p insertion into the inner membrane of mitochondria mediated by the D-LD topogenic signal resulted in the catalytically active mCYP11A1p domain in the hybrid protein.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号