首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, low temperatures can activate the CBF cold response pathway playing a prominent role in cold acclimation by triggering a set of cold-related gene expressions. CBF homologous gene, designated as LpCBF3, from a cold-tolerant perennial ryegrass (Lolium perenne L.) accession was identified. It carries the sequences for nuclear localization signal (NLS), AP2 DNA-binding domains and an acidic activation present in most of the plant CBF proteins. Southern analysis indicated the presence of three homologs of LpCBF3 gene in perennial ryegrass genome, and only one amino acid variation in LpCBF3 protein between cold-tolerant and -sensitive perennial ryegrass accessions. In their putative promoter regions, some differential regions were found. Northern blotting and RT-PCR analysis found that LpCBF3 reached the highest expression after 1.5 h of cold treatment (4 degrees C). The COR homologous gene, a downstream gene of CBF, can be expressed in the plant stem of cold-tolerant perennial ryegrass accessions without cold treatment. Without cold treatment, the COR gene cannot be activated in cold-sensitive perennial ryegrass accessions. Cold treatment can prompt expression levels of COR homologous genes in both perennial ryegrass accessions. In transgenic Arabidopsis, the overexpression of LpCBF3 with the 35S promoter resulted in dwarf-like plants, later flowering and greater freezing tolerance.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Barley Cbf3 gene identification,expression pattern,and map location   总被引:20,自引:0,他引:20       下载免费PDF全文
Although cold and drought adaptation in cereals and other plants involve the induction of a large number of genes, inheritance studies in Triticeae (wheat [Triticum aestivum], barley [Hordeum vulgare], and rye [Secale cereale]) have revealed only a few major loci for frost or drought tolerance that are consistent across multiple genetic backgrounds and environments. One might imagine that these loci could encode highly conserved regulatory factors that have global effects on gene expression; therefore, genes encoding central regulators identified in other plants might be orthologs of these Triticeae stress tolerance genes. The CBF/DREB1 regulators, identified originally in Arabidopsis as key components of cold and drought regulation, merit this consideration. We constructed barley cDNA libraries, screened these libraries and a barley bacterial artificial chromosome library using rice (Oryza sativa) and barley Cbf probes, found orthologs of Arabidopsis CBF/DREB1 genes, and examined the expression and genetic map location of the barley Cbf3 gene, HvCbf3. HvCbf3 was induced by a chilling treatment. HvCbf3 is located on barley chromosome 5H between markers WG364b and saflp58 on the barley cv Dicktoo x barley cv Morex genetic linkage map. This position is some 40 to 50 cM proximal to the winter hardiness quantitative trait locus that includes the Vrn-1H gene, but may coincide with the wheat 5A Rcg1 locus, which governs the threshold temperature at which cor genes are induced. From this, it remains possible that HvCbf3 is the basis of a minor quantitative trait locus in some genetic backgrounds, though that possibility remains to be thoroughly explored.  相似文献   

9.
10.
11.
12.
13.
In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7 days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF–COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals.  相似文献   

14.
15.
Mutational load and resource allocation factors and their effects on limiting seed set were investigated in ryegrass by comparative mapping genomics and quantitative trait loci (QTL) analysis in two perennial ryegrass (Lolium perenne) mapping families sharing common genetic markers. Quantitative trait loci for seed-set were identified on chromosome (LG) 7 in both families and on LG4 of the F2/WSC family. On LG7, seed-set and heading date QTLs colocalized in both families and cannot be unequivocally resolved. Comparative genomics suggests that the LG7 region is syntenous to a region of rice LG6 which contains both fertility (S5(n)) and heading date (Hd1, Hd3a) candidate genes. The LG4 region is syntenous to a region of rice LG3 which contains a fertility (S33) candidate gene. QTL maxima for seed-set and heading date on LG4 in the F2/WSC family are separated by c. 8 cm, indicating distinct genetic control. Low seed set is under the control of recessive genes at both LG4 and LG7 locations. The identification of QTLs associated with seed set, a major component of seed yield in perennial ryegrass, indicates that mutational load associated with these genomic regions can be mitigated through marker-assisted selection.  相似文献   

16.
17.
18.
19.
20.
The α-subunit of the casein protein kinase CK2 has been implicated in both light-regulated and circadian rhythm-controlled plant gene expression, including control of the flowering time. Two putative CK2α genes of perennial ryegrass (Lolium perenne L.) have been obtained from a cDNA library constructed with mRNA isolated from cold-acclimated crown tissue. The genomic organisation of the two genes was determined by Southern hybridisation analysis. Primer designs to the Lpck2a-1 and Lpck2a-2 cDNA sequences permitted the amplification of genomic products containing large intron sequences. Amplicon sequence analysis detected single nucleotide polymorphisms (SNPs) within the p150/112 reference mapping population. Validated SNPs, within diagnostic restriction enzyme sites, were used to design cleaved amplified polymorphic sequence (CAPS) assays. The Lpck2a-1 CAPS marker was assigned to perennial ryegrass linkage group (LG) 4 and the Lpck2a-2 CAPS marker was assigned to LG2. The location of the Lpck2a-1 gene locus supports the previous conclusion of conserved synteny between perennial ryegrass LG4, the Triticeae homoeologous group 5L chromosomes and the corresponding segment of rice chromosome 3. Allelic variation at the Lpck2a-1 and Lpck2a-2 gene loci was correlated with phenotypic variation for heading date and winter survival, respectively. SNP polymorphism may be used for the further study of the role of CK2α genes in the initiation of reproductive development and winter hardiness in grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号