首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cultured microspores of Brassica napus L. cvs Topas and Reston initiated cell divisions within 3 to 4 days, and globular, heart and torpedo shaped embryos were prevalent after approximately 6, 8, and 10 days, respectively. Embryos with rudimentary cotyledons were evident within 2 weeks, but those that reached this stage of development represented only 1–5% of the original microspore population. The fresh weight of microspore-derived embryos at all stages of development was significantly greater than that for zygotic embryos, but the pattern of change in fresh weight and fatty acid accumulation was similar in developing zygotic and microspore embryos. In freshly isolated microspores of both Topas (low erucic acid) and Reston (high erucic acid), the predominant fatty acid was 18:3, while 18:1 comprised less than 15% of total fatty acids. During development in both zygotic and microspore embryos, the level of 18:3 declined markedly while 18:1 rapidly increased. Erucic acid (22:1) was not detected in the early stages of embryogenesis in Reston. However, small amounts of 22:1 appeared by early cotyledonary stage and the level gradually increased in both zygotic and microspore embryos through the later stages of development. The fatty acid compositions of mature embryos was nearly identical to that of dry seed, except the level of 22:1 in Reston embryos was consistently less than in the seed. Triacylglycerols comprised only 15% of total lipids in freshly isolated microspores, but increased to more than 90% by 4 weeks. The fatty acid composition of the triacylglycerol fraction was generally similar to that of total lipids at all stages of development of microspore-derived embryos.  相似文献   

2.
3.
4.
 Offspring of somatic hybrids between the zero-erucic acid rapeseed cv Hanna and Lesquerella fendleri were analysed regarding their fatty acid profiles. In the first back-cross generation one plant was found that produced a seed containing up to 16.5% erucic acid and 15% eicosaenoic acid (Line 1), as well as a seed having 4.3% ricinoleic acid (Line 2). This was interpreted as due to a contribution of elongase and hydroxylase genes from the L. fendleri genome since these two fatty acids are not produced in the recipient rapeseed cultivar Hanna. Crosses between Line 1 and cv Hanna resulted in the production of seeds with 35% erucic acid (F2). Furthermore, crosses between the F2 plants and the rapeseed cultivar Gulle, producing 35% erucic acid in the seeds, resulted in F3 seeds with 48% erucic acid. The highest amount of erucic acid, 61.5%, was found in the F6 generation after crossing Line 1 with a high erucic acid rapeseed line, HEAR, followed by self-fertilisation for two generations. When performing Southern-blot analysis on the F6 plants, seven of the nine analysed plants hybridised with the L. fendleri species-specific repetitive probe. The presence of the hydroxylase gene was also observed in the F6 generation of Line 1 according to Southern-blot analysis. Hybridisation with a hydroxylase probe was seen although no hydroxy fatty acids could be detected in any of the F6 plants. In parallel, Line 2 was crossed with HEAR cv Gulle and self fertilised. No hydroxy fatty acids were detected in the F2 generation of Line 2 and no specific hybridisation patterns could be found in the Southern-blot analysis. Received: 12 December 1998 / Accepted: 4 January 1999  相似文献   

5.
In Brassicas, the Fatty Acid Elongation1 (FAE1) gene product, a 3-ketoacyl-CoA synthase, is the first in a 4-enzyme complex involved in the synthesis of erucic acid from oleic acid. The FAE1 homologue from Brassica juncea cv. Pusa Bold was cloned in a binary vector both in sense and antisense orientations under the control of the CaMV35S promoter. The recombinant binary vectors were used to transform B. juncea cv. RLM 198 via Agrobacterium tumefaciens. The presence of the transgene was confirmed by polymerase chain reaction and Southern hybridization. Northern and western analyses showed the expression of the gene and protein, respectively, in the transgenic plants. Analyses of the fatty acid profile of the seed oil from homozygous T4 generation seeds revealed that over-expression of the FAE1 gene caused a 36% increase in the percent of erucic acid (37–49% compared to 36% in untransformed control). The down-regulation of FAE1 caused an 86% decrease in the percent of erucic acid to as low as 5% in the seed oil of transgenic plants. Thus, it is clearly possible to alter erucic acid content of mustard by altering the expression level of the FAE 1 gene. S. Kanrar and J. Venkateswari equally contributed to this work.  相似文献   

6.
Nishiwaki M  Fujino K  Koda Y  Masuda K  Kikuta Y 《Planta》2000,211(5):756-759
Seedlings of carrot (Daucus carota L. cv. Red Cored Chantenay) formed somatic embryos when cultured on medium containing abscisic acid (ABA) as the sole source of growth regulator. The number of embryos per number of seedlings changed depending on the concentration of ABA added to the medium, with a maximum embryo number at 1 × 10−4 M ABA. Seedling age was critical for response to exogenous ABA; no seedling with a hypocotyl longer than 3.0 cm was able to form an embryo. Removal of shoot apices from seedlings completely inhibited the embryogenesis induced by application of exogenous ABA, suggesting that the action of ABA requires some substance(s) that is translocated basipetally from shoot apices through hypocotyls. Histologically, somatic embryos shared common epidermal cells and differentiated not through the formation of embryogenic cell clumps, but directly from epidermal cells. These morphological traits are distinct from those of embryogenesis via formation of embryogenic cell clumps, which has been found in embryogenic carrot cultures established using 2,4-dichlorophenoxyacetic acid or other auxins. These results suggest that ABA acts as a signal substance in stress-induced carrot seedling somatic embryogenesis. Received: 22 April 2000 / Accepted: 8 June 2000  相似文献   

7.
Diacylglycerol acyltransferase (EC 2.3.1.20) activity was assayed during the maturation of seeds of oilseed rape (Brassica napus L.) and safflower (Carthamus tinctorius L.). Developmental studies were also conducted with microspore-derived embryos of oilseed rape (B. napus L. cv Topas) and an embryogenic microspore-derived cell-suspension culture of winter oilseed rape (B. napus L. cv Jet Neuf). In the maturing seeds, diacylglycerol acyltransferase activity increased to a maximum during rapid accumulation of lipid and declined, thereafter, with seed maturity. In microspore-derived embryos of oilseed rape (cv Topas), high levels of diacylglycerol acyltransferase activity were found throughout the early torpedo to late cotyledonary developmental stages with maximum enzyme specific activity associated with the mid-cotyledonary developmental stage. The cell-suspension culture of winter oilseed rape (cv Jet Neuf) contained 3 to 4% triacylglycerol on a dry weight basis and represented about half of the total lipid. The fatty acid profile of total lipid and triacylglycerol in the cell-suspension culture was similar in samples taken during a 1-year period. The Jet Neuf culture contained diacylglycerol acyltransferase with specific activity similar to that of Topas microspore-derived embryos. Jet Neuf diacylglycerol acyltransferase also displayed an enhanced specificity for erucoyl-CoA over oleoyl-CoA when assayed with 14 [mu]M acyl-coenzyme A in the reaction mixture. The specific activity of diacylglycerol acyltransferase in homogenates prepared from the Jet Neuf culture ranged from 5 to 15 pmol of triacylglycerol min-1 mg-1 of protein when assayed at intervals during a period of 1 year. Thus, the cell-suspension culture may represent an attractive tissue source for purification and characterization of triacyl-glycerol biosynthetic enzymes.  相似文献   

8.
Modification of the structure of abscisic acid (ABA) has been reported to result in modification of its physiologic activity. In this study we tested the effect of removing methyl groups from the ring and of chirality of ABA on activity in microspore-derived embryos of oilseed rape (Brassica napus L.). The natural (+)-ABA molecule induced growth inhibition and an increase in the amount of erucic acid accumulated in the oil at medium concentrations less than 1 μm. (−)-ABA showed similar effects. Removing the 7′-methyl group resulted in a dramatic decrease in activity: (+)-7′-demethyl-ABA retained some activity as a growth inhibitor; a 10–100 μm concentration of this compound was needed for a response, and (−)-7′-demethyl-ABA was almost completely inactive. Similar effects were observed with regard to elongase activity, which catalyzes erucic acid biosynthesis from oleic acid. Removal of the 8′- and 9′-methyl groups resulted in a more complex response. These compounds all showed intermediate activity; for growth inhibition, the presence of the 9′-methyl was the more important determinant, whereas chirality dominated the response on erucic acid accumulation, with the (+)-enantiomers being more active. Received July 25, 1997; accepted October 31, 1997  相似文献   

9.
Erucic acid (22:1) is a valuable renewable resource for the oleochemical industry. Currently available high erucic acid rapeseed cultivars contain only about 50% erucic acid in the seed oil. A substantial increase of the erucic acid content of the rapeseed oil could increase market prospects. The transgenic line TNKAT, over expressing the rapeseed fatty acid elongase gene (fae1) and expressing the Ld-LPAAT gene from Limnanthes douglasii was crossed with the line 6575-1 HELP (high erucic and low polyunsaturated fatty acid). A from the F1 plants produced population of 90 doubled haploid (DH) lines was tested in a greenhouse with three replicates. Parental lines TNKAT and 6575-1 HELP contained 46 and 50% erucic acid in the seed oil, respectively. In the DH population the erucic acid content ranged between 35 and 59%. The Ld-LPAAT + Bn-fae1.1 transgene showed a 1:1 segregation. The transgenic DH lines contained up to 8% trierucolyglycerol, but surprisingly had a by 2.3% lower erucic acid content compared to the non-transgenic segregants. Results indicated that the ectopically expressed fae1.1 gene may not be functional. The DH population also showed a large quantitative variation for PUFA content ranging from 6 to 28% (TNKAT: 21%, 6575-1 HELP: 8%). Regression analysis showed that in the DH population a 10% reduction in PUFA content led to a 4.2% increase in erucic acid content. Development of locus specific PCR primers for the two resident erucic acid genes fae1.1 (A-genome) and fae1.2 genes (C-genome) of rapeseed allowed sequencing of the respective alleles from TNKAT and 6575-1 HELP. Single nucleotide polymorphisms were only found for the fae1.1 gene. Use of allele specific fae1.1 PCR primers, however, did not reveal a significant effect of the fae1.1 allele from either parent on erucic acid content. The high erucic acid low polyunsaturated fatty acid DH lines and the fae1 locus specific primers developed in the present study should be useful in future studies aimed at increasing erucic acid content in rapeseed.  相似文献   

10.
Summary The relative maturity and competence of somatic embryos is often estimated on the basis of their morphologic similarity to various stages of immature zygotic embryo development. Morphologic abnormalities noted in soybean [Glycine max (L.) Merr.] somatic embryos are similar to those observed in zygotic embryos maturing in vitro and may reflect common interruptions of normal developmental processes. We provide here a more objective means of assessing the point(s) at which cultured embryos deviate from the normal embryogenical pathway by comparing the accumulation of the embryo-specific marker proteins (11S and 7S storage globulins, soybean agglutinin, and seed lipoxygenase) between somatic and immature zygotic embryos maturing in culture to zygotic embryos maturingin planta. Immature (heart-stage) soybean (cv. ‘McCall’) zygotic embryos were removed from the testa and cultured for 5, 15, or 45 days in nien modified Linsmaer-Skoog salts, 5% sucrose liquid medium. Somatic embryos were induced from immature cotyledon explants on a medium containing either naphthalene acetic acid or 2,4 dichlorophenoxyacetic acid (10 mg·liter−1). The measured level of the marker proteins present in cultured embryos never exceeded those observed in mature soybean seeds. During the culture period, immature zygotic embryos accumulated significant levels of all marker proteins except a 29 kDa soybean agglutinin associated with the final stages of seed maturationin planta. Somatic embryos of all morphologic classes exhibited similar levels of the marker proteins suggesting that morphology may not accurately represent the developmental state of the culture-derived embryos. Somatic embryos induced on naphthalene acetic acid-containing medium accumulated detectable levels of all maturation-specific marker proteins except the 7S β and 29-kD soybean agglutinin antigen and seemed similar in most respects to the cultured zygotic embryos. Embryos induced on 2,4-dichlorophenoxyacetic acid accumulated none of the mature 7S or 11S storage globulin subunits nor any soybean agglutinin antigen, and yet the synthesis of 7S and 11S precursor polypeptides was similar in both naphthalene acetic acid-and 2,4-dichlorophenoxyacetic acid-induced somatic embryos. These observations are consistent with the view that embryos induced on high 2,4-dichlorophenoxyacetic are arrested at a relatively earlier developmental stage than naphthalene acetic acid-induced embryos of similar morphology and may indicate that some external signal (e.g., abscisic acid or desiccation or both) is necessary for the transition to the late maturation stage of seed ontogeny.  相似文献   

11.
Biosynthesis of very long chain (>C18) fatty acids (VLCFAs) and the pathway for their incorporation into acyl lipids was studied in microspore-derived (MD) and zygotic embryos of Brassica napus L. cv Reston. In the presence of [1-14C]oleoyl-coenzyme A or [1-14C] eicosenoyl-coenzyme A, malonyl-coenzyme A, and reducing equivalents, maximal in vitro elongation activity was expressed in protein preparations from early-mid cotyledonary stage MD embryos (17-20 days in culture), when endogenous eicosenoic (20:1) and erucic (22:1) acids were just beginning to accumulate (approximately 1.5 milligrams per gram dry weight). The biosynthesis of VLCFAs and their incorporation into glycerolipids in vitro in the MD embryo system occurred at rates comparable to those measured in developing zygotic Reston embryos at about 20 days postanthesis. When glycerol-3-phosphate was supplied as acyl acceptor in time-course experiments using homogenates prepared from 18-day MD embryos, newly synthesized [14C]20:1 and [14C]22:1 were incorporated primarily into triacylglycerols (TAGs) and, to a lesser extent, into lyso-phosphatidic/phosphatidic acids, diacylglycerols, and phosphatidylcholines as well as the acyl-coenzyme A and free fatty acid pools. [14C]24:1 was not detected in any acyl lipid. Stereospecific analyses of the radiolabeled TAGs indicated that [14C]20:1 and [14C]22:1 moieties were esterified predominantly at the sn-3 position, but were also found at the sn-1 position. [14C]20:1, but not [14C]22:1, was detected at the sn-2 position. Similar patterns of 14C-labeled VLCFA distribution were obtained in experiments conducted using a 15,000g pellet fraction from 18-day MD embryos. All trends observed in the formation of TAGs containing VLCFAs in the Reston MD embryo system were also confirmed in studies of zygotic embryos of the same cultivar. The data support the biosynthesis of 20:1 and then 22:1 via successive condensations of malonyl-coenzyme A with oleoyl-coenzyme A and, for the first time in B. napus, demonstrate the incorporation of newly synthesized VLCFAs into TAGs via the Kennedy pathway.  相似文献   

12.
Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild‐type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine‐diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.  相似文献   

13.
Biochemical properties, i.e. endogenous abscisic acid, proline,sugars, respiration, adenosine phosphates and adenylate energycharge, and growth and moisture content were measured duringthe development of seeds of Machilus thunbergii. As dry matteraccumulated in the embryo during development, moisture content,ABA, proline, respiration and sugars all declined. At maturity,the dry mass of the seeds failed to attain a plateau beforethe period of natural seed shedding; the axis and cotyledonsreached moisture contents of 58 and 45%, respectively. Dryingof immature seeds at 73% relative humidity and 25 °C for30 d resulted in a complete loss of viability at all developmentalstages tested with the exception of mature seeds that were ableto tolerate a 5% decrease in moisture content before germinationdeclined. ABA was detected in all embryos tested, with a maximum value16.·16 µg g-1 d. wt about midway through development.Although the presence of ABA induced no tolerance to desiccationof mature seeds, it did coincide with decreased content of waterin the developing seeds and decreased respiration. Desiccationdamage of M. thunbergii seeds occurred when moisture contentwas still high (45%) and this damage was not related to theabsence of oligosaccharides in the mature seeds. We concludethat developing embryos and mature seeds of M. thunbergii haveproperties common to many recalcitrant seeds, with seeds beingsensitive to desiccation at all stages, having a prominent ABApeak, little proline, lacking oligosaccharides, and specifically,little dormancy and a moderate rate of respiration of matureseeds (0·9 µmol O2 min-1 g-1 f. wt). Adenosinetriphosphate content and energy charge decreased from stagefour to stage eight of seed development, then increased againto 103 nmol g-1 d. wt and 0·73, respectively, in matureseeds. The moderate energy charge observed in mature seeds indicatesthat continuous metabolism is also a characteristic of recalcitrantseeds.Copyright 1995, 1999 Academic Press Machilus thunbergii, seed development, recalcitrant seed, abscisic acid, energy charge  相似文献   

14.
Cynanchum komarovii is well adapted to hot and dry adverse environments. To determine if exogenous abscisic acid (ABA) affects the growth and dehydration tolerance of this wild plant, ABA was added into the hydroponic solution at a final concentration of 10 μM for 14 days. Root growth is less inhibited than shoot growth under well-watered condition by ABA treatment. ABA reduced the drying rate of seedlings, indicating the acquisition of increased dehydration tolerance. Increased dehydration tolerance is associated with osmotic adjustment and with accumulation of soluble sugars and dehydrins. Results from immunological detection showed that a band of dehydrins with molecular mass of 28.3 kDa appeared in ABA-treated fresh seedlings, which coincided with that in nontreated seedling dessicated for 4 h in 75% relative humidity. The increased ratio of higher to lower amide I bands in Fourier transform infrared spectroscopy analysis indicated that the proportion of unordered structures in proteins was higher after ABA treatment. We concluded that exogenous ABA improved dehydration tolerance of C. komarovii seedlings.  相似文献   

15.
The effects of dietary zinc deficiency (ZD) on the composition and metabolism of the fatty acyl chains of phospholipids in rat liver were investigated with a fat-free diet. The levels of (n−9) fatty acids such as 18∶1 and 20∶3(n−9) in liver phospholipids (PL) were significantly lower in ZD-rats (19.4% and 5.4%, respectively) than in PF-rats (25.2 and 8.3%). On the other hand, the level of (n−6) acids such as 18∶2 and 20∶4 were higher in ZD-rats (3.3 and 19.1%, respectively) than in PF-rats (2.1 and 14.9%). In order to study the metabolism of fatty acids in vivo,14C-18∶0 or14C-18∶2 was intravenously injected, and then the conversion to the respective metabolite was examined. After the injection of14C-18∶0, the radioactivity was found in 18∶0 (49.3% of the total), 18∶1 (33.2%), and 20∶3 (n−9) (9.1%) in liver PL in PF-rats at 24h. In ZD-rats, the radioactivity was dramatically lower in 18∶1 (23.5%) and 20∶ (n−9) (3.6%), suggesting that the conversion of 18∶0 to 18∶1 and 20∶3 (n−9) was strongly inhibited in ZD-rats. When14C-18∶2 was injected, the radioactivity was mainly found in 18∶2, 20∶3(n−6), and 20∶4. The radioactivity in 20∶4 in ZD-rats was slightly higher than that in control rats. These results indicate that zinc deficiency affects the fatty acid metabolism in liver, in particular, it causes a reduction in δ9 desaturase activity, when rats are fed a fat-free diet.  相似文献   

16.
The role of endogenous indole-3-acetic acid (IAA), soluble proteins and RNA in the development of tea (Camellia sinensis (L). O. Kuntze) seeds was investigated in the present study. The state of continuum even at full maturity and lack of a clear end point to seed development as indicated by the persistence of appreciable contents of proteins at full maturity in all the seed parts further confirmed the ‘recalcitrant nature’ of the tea seeds. Unlike the orthodox seeds, the level of free IAA in tea embryos also remained high even at full maturity. The total RNA content remained high in the stages with high moisture content but declined with progressive decline in moisture content.  相似文献   

17.
An endogenous α-amylase inhibitor was found to be synthesized in embryos of developing barley grain (Hordeum vulgare cv Bonanza). Accumulation of this protein occurred late in development (stage IV), at the same time that endogenous abscisic acid (ABA) showed a large increase. The inhibitor could be induced up to 23-fold in isolated immature embryos (stage III) by culture in ABA. Precocious germination was also blocked in stage III embryos by ABA. Dehydration stress on the isolated immature embryos also induced higher levels of the inhibitor and ABA. An even greater response to dehydration stress was observed in young seedlings, where inhibitor content increased 20-fold and ABA increased 80-fold during water stress. The high degree of correlation between ABA and inhibitor contents in in situ embryos, dehydrated embryos and young seedlings, as well as the increase in inhibitor caused by exogenously applied ABA to isolated embryos, suggests that increased α-amylase inhibitor synthesis in response to dehydration stress is mediated by ABA.  相似文献   

18.
Embryogeny of gymnosperms: advances in synthetic seed technology of conifers   总被引:26,自引:0,他引:26  
Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.Abbreviations ABA abscisic acid - LEA late embryogenesis abundant - PEG polyethylene glycol - PGR plant growth regulator - RH relative humidity - TAG triacylglycerol  相似文献   

19.
Oil bodies were purified from mature seed of two Brassica napus crop cultivars, Reston and Westar. Purified oil body proteins were subjected to both 2-DE followed by LC-MS/MS and multidimensional protein identification technology. Besides previously known oil body proteins oleosin, putative embryo specific protein ATS1, (similar to caleosin), and 11-beta-hydroxysteroid dehydrogenase-like protein (steroleosin), several new proteins were identified in this study. One of the identified proteins, a short chain dehydrogenase/reductase, is similar to a triacylglycerol-associated factor from narrow-leafed lupin while the other, a protein annotated as a myrosinase associated protein, shows high similarity to the lipase/hydrolase family of enzymes with GDSL-motifs. These similarities suggest these two proteins could be involved in oil body degradation. Detailed analysis of the two other oil body components, polar lipids (lipid monolayer) and neutral lipids (triacylglycerol matrix) was also performed. Major differences were observed in the fatty acid composition of polar lipid fractions between the two B. napus cultivars. Neutral lipid composition confirmed erucic acid and oleic acid accumulation in Reston and Westar seed oil, respectively.  相似文献   

20.
High-erucic acid (HEA) Brassica napus cultivars are regaining interest in industrial contexts. Erucic acid and its derivatives are important renewable raw materials utilized in the manufacture of plastic films, in the synthesis of Nylon 13,13, and in the lubricant and emollient industries. Theoretically, the highest level of erucic acid that can be achieved by means of classical breeding is 66 mol%; however, using new approaches on the basis of genetic engineering, it might be possible to develop a B. napus cultivar containing levels of erucic acid significantly above 66 mol% (>80 mol%). In an attempt to increase the amounts of very-long-chain fatty acids (VLCFAs), and erucic acid in particular, in Canadian HEA B. napus cultivars, we have focused on two targets using a transgenic approach. We examined both the role/function of the Arabidopsis thaliana FAE1 (fatty acid elongase) gene by expressing it under the control of the seed-specific napin promoter in B. napus germplasm with analysis of the changes in VLCFA content in the seed oil of transgenic lines, and the performance of the yeast SLC1-1 (sphingolipid compensation mutant) in B. napus cv. Hero transgenic progeny in the field. Here, we report analyses of the contents of 22:1, total VLCFAand oil in the seed oil, as well as seed yield of the field-grown FAE1 and SLC1-1 B. napus cv. Hero progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号