首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen contribution of cowpea green manure and residue to upland rice   总被引:1,自引:0,他引:1  
Cowpea, Vigna unguiculata (L.) Walp., is well adapted to acid upland soil and can be grown for seed, green manure, and fodder production. A 2-yr field experiment was conducted on an Aeric Tropaqualf in the Philippines to determine the effect of cowpea management practice on the response of a subsequent upland rice crop to applied urea. Cowpea was grown to flowering and incorporated as a green manure or grown to maturity with either grain and pods removed or all aboveground vegetation removed before sowing rice. Cowpea green manure accumulated on average 68 kg N ha−1, and aboveground residue after harvest of dry pods contained on average 46 kg N ha−1. Compared with a pre-rice fallow, cowpea green manure and residue increased grain yield of upland rice by 0.7 Mg ha−1 when no urea was applied to rice. Green manure and residue substituted for 66 and 70 kg urea-N ha−1 on upland rice, respectively. In the absence of urea, green manure and residue increased total aboveground N in mature rice by 12 and 14 kg N ha−1, respectively. These increases corresponded to plant recoveries of 13% for applied green manure N and 24% for applied residue N. At 15 d after sowing rice (DAS), 33% of the added green manure N and 16% of the added residue N was recovered as soil (nitrate + ammonium)-N. At 30 DAS, the corresponding recoveries were 20 and 37% for green manure N and residue N, respectively. Cowpea cropping with removal of all aboveground cowpea vegetation slightly increased (p<0.05) soil (nitrate + ammonium)-N at 15 DAS as compared with the pre-rice fallow, but it did not increase rice yield. Cowpea residue remaining after harvest of dry pods can be an effective N source for a subsequent upland rice crop.  相似文献   

2.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

3.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

4.
The effects on growth, quality and N uptake by turfgrass (Cynodon dactylon L.) during sod production of four fertiliser types applied at three application rates (100, 200 or 300 kg N ha−1 per ‘crop’) under two irrigation treatments (70% and 140% daily replacement of pan evaporation) were investigated. The fertiliser types were: water-soluble (predominately NH4NO3), control-release, pelletised poultry manure, and pelletised biosolids; and the experiment was conducted on a sandy soil in a Mediterranean-type climate. Plots were established from rhizomes, with the turfgrass harvested as sod every 16–28 weeks depending upon the time of the year. Four crops were produced during the study. Applying water-soluble and control-release fertilisers doubled shoot growth and improved turfgrass greenness by up to 10% in comparison with plots receiving pelletised poultry manure and pelletised biosolids. Nitrogen uptake into the shoots after four crops (averaged across irrigation treatments and N rates) was 497 kg N ha−1 for the water-soluble fertiliser, 402 kg N ha−1 for the control-release, 188 kg N ha−1 for the pelletised poultry manure and 237 kg N ha−1 for the pelletised biosolids. Consequently, the agronomic nitrogen-use efficiency (NAE, kg DM kg−1 N applied) of the inorganic fertilisers was approximately twice that of the organic fertilisers. Increasing irrigation from 70% to 140% replacement of pan evaporation was detrimental to turfgrass growth and N uptake for the first crop when supplied with the water-soluble fertiliser. Under the low irrigation treatment, inorganic N fertilisers applied at 200–300 kg N ha−1 were adequate for production of turfgrass sod. Section Editor: P. J. Randall  相似文献   

5.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

6.
Although wheat (Triticum aestivum L.) is the dominant crop of the semi-arid plains of Canada and the western United States, lentil (Lens culinaris Medik.) has become an important alternative crop. Sources and seasonal accumulation of N must be understood in order to identify parameters that can lead to increased N2-fixing activity and yield. Inoculated lentil was grown in a sandy-loam soil at an irrigated site in Saskatchewan, Canada. Wheat was used as the reference crop to estimate N2 fixation by the A-value approach. Lentil and wheat received 10 and 100 kg N ha−1 of ammonium nitrate, respectively. Crops were harvested six times during the growing season and plant components analyzed. During the first 71 days after planting the wheat had a higher daily dry matter and N accumulation compared to lentil. However, during the latter part of the growing season, daily dry matter and N accumulation were greater for lentil. The maximum total N accumulation for lentil at maturity was 149 kg ha−1. In contrast, wheat had a maximum N accumulation of 98 kg ha−1 in the Feekes 11.1 stage, or 86 days after planting. The maximum daily rates of N accumulation were 3.82 kg N ha−1 day−1 for lentil and 2.21 kg N ha−1 day−1 for wheat. The percentage of N derived from N2 fixation (% Ndfa) ranged from 0 at the first harvest to 92 % at final harvest. Generative plant components had higher values for % Ndfa than the vegetative components which indicates that N in the reproductive plant parts was derived largely from current N2 fixation and lentil continued to fix N until the end of the pod fill stage. At final harvest, lentil had derived 129 kg N ha−1 from N2 fixation with maximum N2-fixing activity (4.4 kg N ha−1 day−1) occurring during the early stages of pod fill. Higher maximum rates of N2-fixing activity than net N accumulation (3.82 kg N ha−1 day−1) may have been caused by N losses like volatilization. In addition, lentil provided a net N contribution to the soil of 59 kg ha−1 following the removal of the grain.  相似文献   

7.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Seasonal patterns of growth and nitrogen fixation in field-grown pea   总被引:2,自引:1,他引:1  
The seasonal patterns of growth and symbiotic N2 fixation under field conditions were studied by growth analysis and use of15N-labelled fertilizer in a determinate pea cultivar (Pisum sativum L.) grown for harvest at the dry seed stage. The patterns of fertilizer N-uptake were almost identical in pea and barley (the non-fixing reference crop), but more fertilizer-N was recovered in barley than in pea. The estimated rate of N2 fixation in pea gradually increased during the pre-flowering and flowering growth stages and reached a maximum of 10 kg N fixed per ha per day nine to ten weeks after seedling emergence. This was the time of early pod-development (flat pod growth stage) and also the time for maximum crop growth rate and maximum green leaf area index. A steep drop in N2 fixation rate occurred during the following week. This drop was simultaneous with lodging of the crop, pod-filling (round pod growth stage) and the initiation of mobilization of nitrogen from vegetative organs. The application of fertilizer-N inhibited the rate of N2 fixation only during that period of growth, when the main part of fertilizer-N was taken up and shortly after. Total accumulation of fixed nitrogen was estimated to be 244, 238 and 213 kg N ha−1 in pea supplied with nil, 25 or 50 kg NO 3 −N ha−1, respectively. About one-fourth of total N2 fixation was carried out during preflowering, one fourth during the two weeks of flowering and the remainder during post-flowering. About 55% of the amount of N present in pods at maturity was estimated to be derived from mobilization of N from vegetative organs. “Starter” N (25 or 50 kg NO 3 −N ha−1) did not significantly influence either dry matter and nitrogen accumulation or the development of leaf area. Neither root length and root biomass determined 8 weeks after seedling emergence nor the yield of seed dry matter and nitrogen at maturity were influenced by fertilizer application.  相似文献   

9.
We report a study in northern Thailand to examine the effects of fertilizer N, applied both to paddy rice and to a subsequent soybean crop on symbiotic and yield characteristics of soybean and on the differences between inputs of fixed N2 and the removal of N as harvested product. Treatments were a factorial arrangement of 0, 100 and 300 kg N ha-1 applied to the rice (designated R0, R100 and R300, respectively), and 0,25 and 50 kg N ha-1, applied as starter fertilizer to the soybean (S0, S25 and S50, respectively).Nitrogen applied to the rice increased rice yields by up to 74% but proportions recovered by the rice were low (45% [R100] and 14% [R300]). The rice N treatments had only marginal effects on soybean nodulation (up to 17% reduction in early growth) and above-ground dry matter (up to 9% increase). Effects on soybean seed yield and total N2 fixed were insignificant. Starter N, applied to the soybean at sowing, also marginally reduced nodulation and enhanced above-ground dry matter. Total N2 fixed was unaffected but seed yield was increased by up to 6%. For all treatments, total above-ground N ranged from 145 to 179 kg ha-1 with 72 to 85% (122 and 140 kg ha-1) derived from N2 fixation. When harvested product consisted of seed only, differences between inputs of fixed N2 and removals of seed N were close to zero (-10 to+9 kg N ha-1) with little effect of fertilizer N. The N balances were reduced by an average of 18 kg N ha-1 when straw was included as harvested product. We concluded that N applied to the rice and to the following soybean was inefficiently used by those crops and had only marginal effects of symbiotic activity of the soybean. Furthermore, the benefit of the N2 fixing soybean in this system was to slow the decline of, rather than enhance, the N fertility of the soil  相似文献   

10.
Intercropping cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) is one of the ways to improve food security and soil fertility whilst generating cash income of the rural poor. A study was carried out to find out the effect of cotton–cowpea intercropping on cowpea N2-fixation capacity, nitrogen balance and yield of a subsequent maize crop. Results showed that cowpea suppressed cotton yields but the reduction in yield was compensated for by cowpea grain yield. Cowpea grain yield was significantly different across treatments and the yields were as follows: sole cowpea (1.6 Mg ha−1), 1:1 intercrop (1.1 Mg ha−1), and 2:1 intercrop (0.7 Mg ha−1). Cotton lint yield was also significantly different across treatments and was sole cotton (2.5 Mg ha−1), 1:1 intercrop (0.9 Mg ha−1) and 2:1 intercrop (1.5 Mg ha−1). Intercropping cotton and cowpea increased the productivity with land equivalence ratios (LER) of 1.4 and 1.3 for 1:1 and 2:1 intercrop treatments, respectively. There was an increase in percentage of N fixation (%Ndfa) by cowpea in intercrops as compared to sole crops though the absolute amount fixed (Ndfa) was lower due to reduced plant population. Sole cowpea had %Ndfa of 73%, 1:1 intercrop had 85% and 2:1 intercrop had 77% while Ndfa was 138 kg ha−1 for sole cowpea, 128 kg ha−1 for 1:1 intercrop and 68 kg ha−1 for 2:1 intercrop and these were significantly different. Sole cowpea and the intercrops all showed positive N balances of 92 kg ha−1 for sole cowpea and 1:1 intercrop, and 48 kg ha−1 for 2:1 intercrop. Cowpea fixed N transferred to the companion cotton crop was very low with 1:1 intercrop recording 3.5 kg N ha−1 and 2:1 intercrop recording 0.5 kg N ha−1. Crop residues from intercrops and sole cowpea increased maize yields more than residues from sole cotton. Maize grain yield was, after sole cotton (1.4 Mg ha−1), sole cowpea (4.6 Mg ha−1), 1:1 intercrops (4.4 Mg ha−1) and 2:1 intercrops (3.9 Mg ha−1) and these were significantly different from each other. The LER, crop yields, %N fixation and, N balance and residual fertility showed that cotton–cowpea intercropping could be a potentially productive system that can easily fit into the current smallholder farming systems under rain-fed conditions. The fertilizer equivalency values show that substantial benefits do accrue and effort should be directed at maximizing the dry matter yield of the legume in the intercrop system while maintaining or improving the economic yield of the companion cash crop.  相似文献   

11.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

12.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

13.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

14.
Alternative soil management practices are needed in semi-arid West Africa to sustain soil fertility and cereal production while reducing the need for extended fallow periods and chemical fertilizers. An experiment was conducted at the Cinzana Station near Segou, Mali to assess the effects of tillage, crop residue incorporation and legume rotation on the growth and yield of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum L.) for a period of eight years on a loamy sand and a loam soil. The following treatments were compared under tied ridging and the traditional open ridging: continuous cereal with crop residue removed, continuous cereal with crop residue incorporated, cereal in rotation with cowpea (Vigna unguiculata (L.) Waip.), cereal in rotation with sesbania (Sesbania rostrata Bremek. & Oberm.), and cereal in rotation with dolichos (Dolichos lablab L.). Legumes in rotation were incorporated as green manures except cowpea which was removed after each harvest. Tied ridging improved cereal grain yield from 1022 kg ha−1 with open ridging to 1091 kg ha−1 on the loamy sand and from 1554 kg ha−1 to 1697 kg ha−1 on the loam, when averaged across management regimes and years of cropping. Incorporation of cereal residue at the beginning of the rainy season every other year had only small and inconsistent effects on cereal yield. Rotation with cowpea increased cereal grain and stover yields by 18 and 25%, respectively, on the loamy sand, and by 23% and 27%, respectively, on the loam compared to continuous cereal, when averaged across tillage regimes and years. Sesbania and dolichos performed similarly as green manures on both soils. Incorporation of these legumes as green manure at the end of the rainy season increased cereal grain and stover yields by 37% and 49%, respectively, on the loamy sand, and by 27% and 30%, respectively, on the loam, compared to cereal monoculture without organic amendment, when averaged across tillage regimes and years. A significant linear increase in cereal yield was observed during the eight years of the study on the loam soil when sesbania and dolichos green manures were incorporated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

16.
Summary Soil + charcoal (1∶3) carrier based and liquid cultures of Rhizobia were used to inoculate wheat seed cv. HD2329. The plants received 100 kg N in two equal splits and 60 kg P2O5 and 40 kg K20 ha−1. Inoculation with rhizobia had little effect on grain yield of wheat. Significant increase in straw yield and N-uptake occurred due to inoculation. A comparison of results of a similar experiment conducted during 1983–84, showed that inoculation with the same strains of rhizobia and application 50 kg N ha−1 as basal dressing, was more effective in increasing yield and N-uptake in wheat cv. HD2329. It appears reasonable to assume occurrence of nitrogen fixation by root nodule bacteria in rhizosphere of wheat.  相似文献   

17.
Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.  相似文献   

18.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

19.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

20.
Summary The total amount of nitrogen derived from symbiotic nitrogen fixation in two pea and one field bean cultivar, supplied with 50 kg N ha−1 at sowing (‘starter’-N), was estimated to 165, 136, and 186 kg N ha−1, respectively (three-year means). However, estimates varied considerably between the three years. At the full bloom/flat pod growth stage from 30 to 59 per cent of total N2 fixation had taken place. The proportion of total N derived from N2 fixation at maturity was higher in seeds than in vegetative plant parts and amounted to 59.5, 51.3 and 66.3 per cent of total above-ground plant N in the two pea cultivars and field bean, respectively (three-year means). The recovery of fertilizer N was 62.2, 70.2, 52.1, and 69.5 per cent in the two pea cultivars, field bean and barley, respectively. Growth analysis indicated that barley did not meet the claims for an ideal reference crop in the15N fertilizer dilution technique for estimating N2 fixation in pea and field bean. ‘Starter’-N neither increased the seed yield nor the N content of the grain legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号