首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
ERp57 is a 58-kDa thiol oxidoreductase and a member of the protein disulfide isomerase (PDI)-like family. ERp57 is highly similar to other PDI family members in terms of amino acid sequence and structural/functional domain organization; however, it possesses some distinctive structural features that dictate its unique functions in the cell. This protein plays an important role in endoplasmic reticulum quality control of newly synthesized glycoproteins, is critical in major histocompatability complex (MHC) class I assembly and regulates gene expression. Studies on ERp57-deficient mice indicate that the protein is critical during embryonic development. The protein has been implicated in human pathologies including cancer and Alzheimer's disease.  相似文献   

3.
《Biomarkers》2013,18(7):573-579
Abstract

Objective: We investigated the clinical significance of ERp57 in the progression of cervical cancer.

Methods: mRNA and protein expression of ERp57 in cervical neoplasias were examined.

Results: ERp57 mRNA expression was significantly decreased in cervical cancers. Immunohistochemistry revealed that ERp57 expression in 123 cervical cancers was down-regulated compared to cervical intraepithelial neoplasias or normal tissues (p?<?0.001). Low ERp57 expression was significantly associated with worse overall survival (HR?=?12.19, p?=?0.018).

Conclusions: Low ERp57 expression independently predicts a poor outcome for patients with cervical cancer, supporting the notion that ERp57 may be a promising novel cancer target.  相似文献   

4.
The protein ERp57 (also known as PDIA3) is a widely distributed protein, mainly localized in the endoplasmic reticulum, where it acts as disulfide isomerase, oxidoreductase and chaperone, in concert with the lectins calreticulin (CRT) and calnexin. The ERp57/CRT complex has been detected on the cell surface and previous studies have suggested its involvement in programmed cell death. Although the ERp57-CRT complex has been characterized, little is known about its role in different cellular compartments as well as inhibitors of this interaction.We focused on the kinetic, extent and stability of the ERp57-CRT complex, using the surface plasmon resonance spectroscopy, investigating the possible role as inhibitor of the antibiotic vancomycin. Equilibrium thermodynamic data suggested that vancomycin may hinder the interaction between the two proteins and could interfere with the ERp57 conformational changes that stabilize the complex. Furthermore, by means of confocal microscopy, we evaluated the effect of the in vivo administration of vancomycin on the ERp57/CRT complex on the surface of HeLa cells.The model presented here could be used for the search of other specific inhibitors/interactors of ERp57, which can be extremely helpful to understand the biological pathways where the protein is involved and to modulate its activity.  相似文献   

5.
6.
Understanding cell proliferation mechanisms has been a long-lasting goal of the scientific community and specifically of cancer researchers. Previous genome-scale studies of cancer proliferation determinants have mainly relied on knockdown screens aimed to gauge their effects on cancer growth. This powerful approach has several limitations such as off-target effects, partial knockdown, and masking effects due to functional backups. Here we employ a complementary approach and assign each gene a cancer Proliferation Index (cPI) that quantifies the association between its expression levels and growth rate measurements across 60 cancer cell lines. Reassuringly, genes found essential in cancer gene knockdown screens exhibit significant positive cPI values, while tumor suppressors exhibit significant negative cPI values. Cell cycle, DNA replication, splicing and protein production related processes are positively associated with cancer proliferation, while cellular migration is negatively associated with it – in accordance with the well known “go or grow” dichotomy. A parallel analysis of genes'' non-cancerous proliferation indices (nPI) across 224 lymphoblastoid cell lines reveals surprisingly marked differences between cancerous and non-cancerous proliferation. These differences highlight genes in the translation and spliceosome machineries as selective cancer proliferation-associated proteins. A cross species comparison reveals that cancer proliferation resembles that of microorganisms while non-cancerous proliferation does not. Furthermore, combining cancerous and non-cancerous proliferation signatures leads to enhanced prediction of patient outcome and gene essentiality in cancer. Overall, these results point to an inherent difference between cancerous and non-cancerous proliferation determinants, whose understanding may contribute to the future development of novel cancer-specific anti-proliferative drugs.  相似文献   

7.
Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.  相似文献   

8.
ERp57 belongs to the protein disulfide isomerases, a family of homologous proteins mainly localized in the endoplasmic reticulum and characterized by the presence of a thioredoxin-like folding domain. ERp57 is a protein chaperone with thiol-dependent protein disulfide isomerase and additional activities and recently it has been shown to be involved, in cooperation with calnexin or with calreticulin, in the correct folding of glycoproteins. However, we have demonstrated that the same protein is also present in the nucleus, mainly associated with the internal nuclear matrix fraction. In vitro studies have shown that ERp57 has DNA-binding properties which are strongly dependent on its redox state, the oxidized form being the competent one. A comparison study on a recombinant form of ERp57 and several deletion mutants, obtained as fusion proteins and expressed in Escherichia coli, allowed us to identify the C-terminal a(') domain as directly involved in the DNA-binding activity of ERp57.  相似文献   

9.
探讨ERp57基因表达沉默对人小细胞肺癌A549细胞中CRT表达和定位的影响。利用siRNA技术获得ERp57基因表达沉默的人A549肺癌细胞株,分析该细胞株中ERp57基因以及CRT基因的蛋白表达水平,免疫荧光法检测细胞中CRT的表达和亚细胞定位,荧光法检测细胞凋亡。成功获得ERp57基因表达沉默的人A549肺癌细胞株。在该细胞中,CRT表达上调但仍定位于内质网中。用米托蒽醌处理对照细胞14 h后,可使CRT大量转移到细胞膜表面并发生簇集,但在ERp57表达沉默的细胞中,CRT的膜转移和簇集现象不明显。细胞凋亡分析显示,米托蒽醌处理细胞48 h后,所有细胞均出现凋亡细胞典型细胞核固缩、分裂现象。试验证明抑制ERp57蛋白表达会增加A549肺癌细胞中CRT的含量,但同时也阻断蒽环类药物诱导的CRT膜转移,提示ERp57也是介导肿瘤细胞免疫原性凋亡的重要因子。  相似文献   

10.
The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.  相似文献   

11.
Defects in HLA class I antigen processing machinery (APM) component expression often have a negative impact on the clinical course of tumors and on the response to T cell-based immunotherapy. Since only scant information is available about the frequency and clinical significance of HLA class I APM component abnormalities in prostate cancer, the APM component expression pattern was analyzed in 59 primary prostate carcinoma, adjacent normal tissues, as well as in prostate carcinoma cell lines. The IFN-γ inducible proteasome subunits LMP2 and LMP7, TAP1, TAP2, calnexin, calreticulin, ERp57, and tapasin are strongly expressed in the cytoplasm of normal prostate cells, whereas HLA class I heavy chain (HC) and β2-microglobulin are expressed on the cell surface. Most of the APM components were downregulated in a substantial number of prostate cancers. With the exception of HLA class I HC, TAP2 and ERp57 not detectable in about 0.5% of tumor lesions, all other APM components were not detected in at least 21% of lesions analyzed. These APM component defects were associated with a higher Gleason grade of tumors and an early disease recurrence. Prostate carcinoma cell lines also exhibit a heterogeneous, but reduced constitutive APM component expression pattern associated with lack or reduced HLA class I surface antigens, which could be upregulated by IFN-γ. Our results suggest that HLA class I APM component abnormalities are mainly due to regulatory mechanisms, play a role in the clinical course of prostate cancer and on the outcome of T cell-based immunotherapies.  相似文献   

12.
Autophagy is a tightly regulated self-digestion system. As in other cell types, autophagy plays an essential role in the homeostasis of pancreatic beta cells. However, the mechanisms involved in the deterioration of beta cell function caused by autophagic failure have not yet been fully elucidated. To gain insight into its mechanisms, we compared the protein expression of islets from beta cell-specific Atg7-deficient mice (Atg7Δβ-cell mice) and their controls (Atg7f/f mice). Liquid chromatography/mass spectrometry after 1-dimensional electrophoresis identified the increased expression of ERp57/GRP58 in islets isolated from Atg7Δβ-cell mice compared with those from Atg7f/f mice. The expression level of ERp57 was also elevated in rat insulinoma INS-1 cells by inducible knock-down of the atg7-gene. In Atg7 knock-down INS-1 cells, the suppression of ERp57 expression by siRNA resulted in an increase in the level of cleaved Caspase-3 protein and a decrease in the number of live cells. Furthermore, cell cycle analyses demonstrated that the suppressed expression of ERp57 increased the sub-G1 population. These data reveal that increased expression of ERp57 may contribute to the protection from beta cell death caused by autophagic failure.  相似文献   

13.
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.  相似文献   

14.
The exposure of calreticulin (CRT) on the plasma membrane can precede anthracycline-induced apoptosis and is required for cell death to be perceived as immunogenic. Mass spectroscopy, immunofluorescence and immunoprecipitation experiments revealed that CRT co-translocates to the surface with another endoplasmic reticulum-sessile protein, the disulfide isomerase ERp57. The knockout and knockdown of CRT or ERp57 inhibited the anthracycline-induced translocation of ERp57 or CRT, respectively. CRT point mutants that fail to interact with ERp57 were unable to restore ERp57 translocation upon transfection into crt(-/-) cells, underscoring that a direct interaction between CRT and ERp57 is strictly required for their co-translocation to the surface. ERp57(low) tumor cells generated by retroviral introduction of an ERp57-specific shRNA exhibited a normal apoptotic response to anthracyclines in vitro, yet were resistant to anthracycline treatment in vivo. Moreover, ERp57(low) cancer cells (which failed to expose CRT) treated with anthracyclines were unable to elicit an anti-tumor response in conditions in which control cells were highly immunogenic. The failure of ERp57(low) cells to elicit immune responses and to respond to chemotherapy could be overcome by exogenous supply of recombinant CRT protein. These results indicate that tumors that possess an intrinsic defect in the CRT-translocating machinery become resistant to anthracycline chemotherapy due to their incapacity to elicit an anti-cancer immune response.  相似文献   

15.
In an attempt to increase the specific thrombopoietin (TPO) productivity (q(TPO)) of recombinant Chinese hamster ovary (rCHO) cells (TPO-33), the effect of expression level of ERp57, an isoform of protein disulfide isomerase, on q(TPO) was investigated. To regulate ERp57 expression level, the Tet-Off system was first introduced in TPO-33 cells and stable Tet-Off cells (TPO-33-Tet-Off) were screened by the luciferase assay. The rCHO cells with a doxycycline-regulated ERp57 expression system (TPO-33-ERp57) were obtained by cotransfection of pTRE-ERp57 and pTK-Hyg expression vectors into TPO-33-Tet-Off cells and subsequent screening by Western blot analysis of ERp57 and an enzyme-linked immunosorbent assay of secreted TPO. Western blot analysis showed that ERp57 expression level in TPO-33-ERp57 cells could be regulated tightly by the addition of different concentrations of doxycycline to a culture medium. A doxycycline concentration of 1 microg/mL, which did not influence cell growth and TPO production of TPO-33-Tet-Off cells, was high enough to suppress the ERp57 expression to a basal level. Compared with the basal level, a 1.7-fold increase in ERp57 expression level was obtained in the absence of doxycycline. This increased expression level of ERp57 resulted in a 2.1-fold increase in q(TPO) without growth inhibition, probably as a result of the chaperone-like activity of ERp57 in CHO cells. Taken together, the results obtained here demonstrate that q(TPO) of rCHO cells can be increased by elevating the expression level of ERp57.  相似文献   

16.
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.  相似文献   

17.
18.
19.
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus.  相似文献   

20.
In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号