首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training.  相似文献   

2.
Previously, our laboratory demonstrated that cardiac mast cell degranulation induces adverse ventricular remodeling in response to chronic volume overload. The purpose of this study was to investigate whether atrial natriuretic peptide (ANP), which is known to be elevated in chronic volume overload, causes cardiac mast cell degranulation. Relative to control, ANP induced significant histamine release from peritoneal mast cells, whereas isolated cardiac mast cells were not responsive. Infusion of ANP (225 pg/ml) into blood-perfused isolated rat hearts produced minimal activation of cardiac mast cells, similar to that seen in the control group. ANP also did not increase matrix metalloproteinase-2 activity, reduce collagen volume fraction, or alter diastolic or systolic cardiac function compared with saline-treated controls. In a subsequent study to evaluate the effects of natriuretic peptide receptor antagonism on volume overload-induced ventricular remodeling, anantin was administered to rats with an aortocaval fistula. Comparable increases of myocardial MMP-2 activity in treated and untreated rats with an aortocaval fistula were associated with equivalent decreases in ventricular collagen (P < 0.05 vs. sham-operated controls). Cardiac functional parameters and left ventricular hypertrophy were unaffected by anantin. We conclude that ANP is not a cardiac mast cell secretagogue and is not responsible for the cardiac mast cell-mediated adverse ventricular remodeling in response to volume overload.  相似文献   

3.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that regulate blood pressure and volume, and exert their biological actions via the natriuretic peptide receptor-A gene (Npr1). Mice lacking Npr1 (Npr(-/-)) have marked cardiac hypertrophy and fibrosis disproportionate to their increased blood pressure. This study examined the relationships between ANP and BNP gene expression, immunoreactivity and fibrosis in cardiac tissue, circulating ANP levels, and ANP and BNP mRNA during embryogenesis in Npr1(-/-) mice. Disruption of the Npr1 signaling pathway resulted in augmented ANP and BNP gene and ANP protein expression in the cardiac ventricles, most pronounced for ANP mRNA in females [414 +/- 57 in Npr1(-/-) ng/mg and 124 +/- 25 ng/mg in wild-type (WT) by Taqman assay, P < 0.001]. This increased expression was highly correlated to the degree of cardiac hypertrophy and was localized to the left ventricle (LV) inner free wall and to areas of ventricular fibrosis. In contrast, plasma ANP was significantly greater than WT in male but not female Npr1(-/-) mice. Increased ANP and BNP gene expression was observed in Npr1(-/-) embryos from 16 days of gestation. Our study suggests that cardiac ventricular expression of ANP and BNP is more closely associated with local hypertrophy and fibrosis than either systemic blood pressure or circulating ANP levels.  相似文献   

4.
We evaluated the effects of difructose anhydride III (DFAIII) on body weights of ovariectomized rats, which are a good model for obesity by estrogen deficiency-induced overeating. Female rats (10 weeks old) were subjected to ovariectomy or sham operation and then fed with or without a diet containing 3% or 6% DFAIII for 33 days or pair-fed control diet during the same period. Rats fed DFAIII showed significantly decreased food intake, energy intake, body weight gain, body energy accumulation, and fat tissue weight than control group, regardless of ovariectomy. DFAIII may decrease body fat dependent of reduced food/energy intake. Compared with the respective pair feeding groups, rats fed DFAIII showed significantly decreased body energy and fat tissue weight, regardless of ovariectomy, suggesting its potential as a low-energy substitute for high-energy sweeteners. The low energy of DFAIII may contribute to decreased body fat, which may not be dependent on obesity.  相似文献   

5.
6.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

7.
In addition to cardiac myocyte hypertrophy, proliferation and increased extracellular matrix production of cardiac fibroblasts occur in response to cardiac overload. This remodeling of the cardiac interstitium is a major determinant of pathologic hypertrophy leading to ventricular dysfunction and heart failure. Atrial and brain natriuretic peptides (ANP and BNP) are cardiac hormones produced primarily by the atrium and ventricle, respectively. Plasma ANP and BNP concentrations are elevated in patients with hypertension, cardiac hypertrophy, and acute myocardial infarction, suggesting their pathophysiologic roles in these disorders. ANP and BNP exhibit diuretic, natriuretic, and vasodilatory activities via a guanylyl cyclase-coupled natriuretic peptide receptor subtype (guanylyl cyclase-A or GC-A). Here we report the generation of mice with targeted disruption of BNP (BNP-/- mice). We observed focal fibrotic lesions in ventricles from BNP-/- mice with a remarkable increase in ventricular mRNA expression of ANP, angiotensin converting enzyme (ACE), transforming growth factor (TGF)-beta3, and pro-alpha1(I) collagen [Col alpha1(I)], which are implicated in the generation and progression of ventricular fibrosis. Electron microscopic examination revealed supercontraction of sarcomeres and disorganized myofibrils in some ventricular myocytes from BNP-/- mice. No signs of cardiac hypertrophy and systemic hypertension were noted in BNP-/- mice. In response to acute cardiac pressure overload induced by aortic constriction, massive fibrotic lesions were found in all the BNP-/- mice examined, accompanied by further increase of mRNA expression of TGF-beta3 and Col alpha1(I). We postulate that BNP acts as a cardiocyte-derived antifibrotic factor in the ventricle.  相似文献   

8.
Atrial natriuretic peptide (ANP) is a newly discovered peptide hormone present mainly in the atria. We investigated the occurrence and distribution of ANP immunoreactivity in the myocardiocytes of the ventricles of spontaneously hypertensive rats by use of immunocytochemistry at both light and electron microscopic level. ANP immunoreactivity was found in the specific granules in the cytoplasm of the cardiocytes in the subendocardium and the myocardium of the ventricles, as well as in the atria. The specific granules found in the ventricles of hypertensive rats were similar in size, shape, and ANP immunoreactive content to those in the atria. The abundance of ANP immunoreactivity in the left ventricle is greater than that in the right, and appears to increase with increasing severity of hypertension. Conversely, the overall content of ANP in the atria of hypertensive rats was decreased when compared with that in age-matched normotensive rats. The present findings indicate that ventricles may become a major source for ANP synthesis and release during hypertension, and may play important roles in cardiac endocrine pathology and cardiac hypertrophy.  相似文献   

9.
Obesity is usually associated with expansion of blood volume. Therefore, we studied whether obesity affects cardiac and plasma atrial natriuretic peptide (ANP) levels in experimental animal model. Mice made obese with gold thioglucose developed cardiac hypertrophy associated with increases in ANP in atrial tissue and plasma. There were significant (p less than 0.01) correlations between the cardiac ANP concentration and body weight or cardiac weight. These data suggest that enhanced synthesis of atrial ANP in obese mice can be mainly ascribed to increased blood volume associated with cardiac hypertrophy.  相似文献   

10.
11.
Plasma levels of atrial natriuretic peptide (ANP) and renal responses to ANP were examined in rats with chronic cardiac failure produced by coronary artery ligation and in sham-operated controls. Plasma ANP levels were elevated in the rats with severe cardiac failure as compared with the controls (P less than 0.001). ANP injections at the doses of 1, 5, 25 and 50 micrograms/kg increased water and sodium excretion significantly at all but the lowest dose in the controls; only the two largest doses caused clear diuresis and natriuresis in the heart failure group. The diuretic and natriuretic effects of ANP were significantly weaker at the doses of 5 and 25 micrograms/kg in the rats with heart failure as compared with the controls. We conclude, that natriuretic and diuretic effects of ANP are attenuated in this chronic heart failure mode.  相似文献   

12.
Long-term nitric oxide (NO) blockade is known to induce a severe and progressive hypertension. The influence of the salt-intake on atrial natriuretic peptide (ANP) system in this hypertension model is unknown. The aim of this study was to evaluate ANP plasma levels, content and mRNA in atria of male Wistar rats chronically treated with oral Nomega-nitro-L-arginine methyl ester (L-NAME) after 4 weeks of high-salt diet. The high-salt diet induced an increase (P < 0.05) in ANP plasma levels in normotensive rats and no significant changes in hypertensive animals. We observed a significant increase in the ANP content in the left and right atria of hypertensive rats (P < 0.001) when compared to normotensive ones. However, no significant changes were observed during high-salt diet in normotensive and hypertensive animals. Northern blot analysis revealed that ANP gene expression is higher in the right and left atria of hypertensive rats when compared to normotensive rats. However, we found no significant changes in ANP mRNA of rats treated with high-salt diet in normotensive and hypertensive rats when compared to low-salt diet. The present observations indicate no interaction between salt-intake and activation of the ANP system during chronic nitric oxide synthase (NOS) inhibition.  相似文献   

13.
The induction of transforming growth factor (TGF)-beta and prepro-atrial natriuretic peptide (ANP) mRNAs represent hallmark features of pathological cardiac hypertrophy. The present study examined whether this pattern of mRNA expression was conserved in a physiological model of cardiac hypertrophy. To address this thesis, female Sprague-Dawley rats were individually housed and permitted to run freely. Voluntary exercise for 3 and 6 wk resulted in biventricular hypertrophy and increased cytochrome c oxidase activity in the triceps muscle. In the hypertrophied left ventricle, the steady-state mRNA level of the cardiac fetal gene prepro-ANP and the extracellular matrix proteins preprocollagen-alpha(1) and fibronectin were similar in exercise-trained and sedentary rats. By contrast, an increased expression of TGF-beta(1) mRNA was observed, whereas TGF-beta(3) mRNA level was unchanged in the hypertrophied left ventricle of exercise-trained compared with sedentary rats. These data highlight a heterogeneity in the regulation of TGF-beta isoforms, and the increased expression of ventricular TGF-beta(1) mRNA in physiological cardiac hypertrophy may contribute to myocardial remodeling.  相似文献   

14.
The effect of obesity and weight reduction upon circulating concentrations of atrial natriuretic peptide was assessed in an experimental model of the disease. Obese rats weighing in excess of 750 g were compared with formerly obese animals subjected to a 15-week period of caloric restriction resulting in a 40% reduction in body weight. Mean adipocyte size was significantly reduced with weight loss, as was estimated body fat. Mean arterial blood pressure remained normotensive for both groups, but a significant reduction in heart rate was associated with weight reduction. Circulating atrial natriuretic peptide was significantly elevated in the lean rats, which also exhibited decreased plasma renin activity and a negative sodium balance. Analysis of heart to body weight ratios implied that an obesity-associated, volume-induced cardiac hypertrophy remained even after the normalization of body fat. These results suggest that the diuresis and natriuresis accompanying weight reduction may be facilitated by atrial natriuretic peptide, which was elevated in part due to a persistent left ventricular hypertrophy following the transition from the obese to lean condition.  相似文献   

15.
The present study determined cardiac chamber-specific alterations of the expression of the atrial and brain natriuretic peptide (ANP and BNP) genes with a small increase in age beyond adulthood and with systemic hypertension of intermediate duration. The expression distributions of these genes was determined using in situ hybridization in the right and left atria (RA and LA), and the right and left ventricles (RV and LV) in Wistar Kyoto rats (WKY) and age-matched Spontaneously Hypertensive rats (SHR) at ages 6 months (adult) and 8 months (advanced-age beyond adulthood).In all rat groups, both genes were expressed (ANP > BNP) in the LA and LV, and were not expressed in the RA and RV. The genes were expressed in the LA in all rat groups; the ANP, but not the BNP, expression increased with advancing age and with superimposed hypertension. They were expressed in the LV of the advanced-age WKY, adult and advanced-age SHR, but not in the adult WKY. The ANP mRNA labeling in the LA was diffuse and interspersed with dense accumulations, whereas BNP labeling was diffuse. The labeling of both genes in the form of sparse clusters was seen in the LV of the advanced-age SHR. Our study showed that ANP and BNP expression in left heart chambers increased with a small increase in age, with hypertension of intermediate duration, and with modest left ventricular hypertrophy. The chamber-specific expression distribution could be due to special groups of cardiac cells, or to local chamber-specific factors.  相似文献   

16.
Tipnis UR  Li S 《Cytobios》2001,106(Z1):85-98
Polyamines (putrescine, spermidine and spermine) play an important role in the development of hypertension and in the expression of atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of blood pressure. Wistar Kyoto normotensive (WKY) and spontaneously hypertensive rats (SHR) were given spermine in drinking water (0.5%) for 15 days. The spermine intake elevated the blood pressures of both SHR and WKY rats and reduced the expression of ANP (Northern blotting) in the ventricles. ANP levels in the plasma determined by enzyme immunoassay (EIA) showed no changes in the levels of plasma ANP after spermine intake. An analysis of polyamines by high-pressure liquid chromatography showed that the levels of spermine and spermidine were elevated in SHR hearts. It was in SHR hearts alone that spermine intake was associated with increases in the levels of putrescine. The results suggest that spermine-induced increases in blood pressure may involve mechanisms other than ANP.  相似文献   

17.
Effects of high salt intake on the early onset of hypertension were examined in two-kidney, one-clip rats. They were divided into high salt and control groups which were supplied with 1.0% NaCl and tap water, respectively, as a drinking solution for 12 days after clipping the left renal artery. The high salt group showed a lower plasma renin concentration and a higher plasma atrial natriuretic peptide (ANP) along with an attenuation of the magnitude of early hypertension, as compared with the control group. A significant positive correlation between blood pressure and plasma renin concentration and an inverse correlation between plasma renin concentration and ANP were shown. Cortical renal renin content was comparable between the two groups. In another two groups of sham-clipped rats, the high salt group did not differ from the tap water-drinking group in any of the parameters examined, except that ANP was significantly higher. These results demonstrate that high salt intake attenuates the developmental phase of hypertension in two-kidney, one-clip rats by increasing the ANP and suppressing the release of renin.  相似文献   

18.
To understand the involvement of the systemic and cardiac components of the renin–angiotensin system (RAS) in the development of cardiac hypertrophy induced by salt intake, the present study analyzed the effect of high dietary salt (8.0% NaCl) in mice possessing a full complement (+/+) or ablation (−/−) of atrial natriuretic peptide (ANP). A 3 week treatment of 8.0% NaCl was able to induce cardiac hypertrophy in both genotypes, though exaggerated hypertrophy was noted in the ANP −/− mouse. Although a marked decrease in angiotensin II (Ang II) plasma levels in both genotypes fed a high salt diet was observed, systemic RAS mRNA components were altered only in the ANP −/− animals and remained unchanged in ANP +/+ mice. Decreased Ang II plasma levels were better correlated with decreases in angiotensinogen protein expression observed in both genotypes. High salt had no effect on cardiac RAS mRNA components in the ANP −/− animals, but did cause a significant decrease in some cardiac RAS mRNA components in ANP +/+ mice. As expected, high salt was able to increase plasma ANP levels and ventricular mRNA expression of ANP (ANP +/+ mice only) and B-type NP in both genotypes. The latter peptides are key cardiac markers of hypertrophy whose increased expression correlate well with the physical salt-induced cardiac alterations observed in this study. These findings suggest that although the RAS does not play a key role in salt-induced cardiac hypertrophy, ANP is an important determinant of the degree of salt-sensitivity observed in the proANP gene-disrupted animal. (Mol Cell Biochem 276: 121–131, 2005)  相似文献   

19.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that are involved in water and electrolyte homeostasis in heart failure. Although both hormones exert almost identical biological actions, the differential regulation of cardiac ANP and BNP mRNA in compensated and overt heart failure is not known. To study the hypothesis that cardiac BNP is more specifically induced in overt heart failure, a large aortocaval shunt of 30 days duration was produced in rats and compared with compensated heart failure. Compensated heart failure was induced either by a small shunt of 30 days duration or by a large shunt of 3 days duration. Both heart failure models were characterized by increased cardiac weight, which was significantly higher in the large-shunt model, and central venous pressure. Left ventricular end-diastolic pressure was elevated only in the overt heart failure group (control: 5.7 +/- 0. 7; small shunt: 8.6 +/- 0.9; large shunt 3 days: 8.5 +/- 1.7; large shunt 30 days: 15.9 +/- 2.6 mmHg; P < 0.01). ANP and BNP plasma concentrations were elevated in both heart failure models. In compensated heart failure, ANP mRNA expression was induced in both ventricles. In contrast, ventricular BNP mRNA expression was not upregulated in any of the compensated heart failure models, whereas it increased in overt heart failure (left ventricle: 359 +/- 104% of control, P < 0.001; right ventricle: 237 +/- 33%, P < 0.01). A similar pattern of mRNA regulation was observed in the atria. These data indicate that, in contrast to ANP, cardiac BNP mRNA expression might be induced specifically in overt heart failure, pointing toward the possible role of BNP as a marker of the transition from compensated to overt heart failure.  相似文献   

20.
In a previous study, we found that a long-term infusion of atrial natriuretic peptide (ANP) produced a sustained reduction of mean arterial pressure and peripheral vascular resistance in two-kidney, one-clip (2K-1C) hypertensive rats, whereas in control rats it had only a transient effect on cardiac output. However, plasma levels of ANP were actually 3-fold higher in normotensive than in hypertensive rats. Previous studies suggested that plasma ANP levels might modulate the vascular reactivity to the peptide. The present study examined whether the lack of chronic hemodynamic effects of ANP in control rats was due to changes in vascular reactivity to the peptide. In control rats, vascular reactivity to ANP was reduced 50% by a chronic infusion of ANP. However, in 2K-1C hypertensive rats, a long-term infusion of ANP had no effect on the vascular reactivity to ANP. The results of the present study indicate that the lack of persistent hemodynamic effects of a chronic infusion of ANP in control rats may be due to a decrease in the vascular reactivity to the peptide. The sustained hypotensive and vasodilatory effects of a long-term infusion of ANP in 2K-1C hypertensive rats are associated with no changes in the vascular reactivity to ANP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号