首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Adaptive phenotypic plasticity in the form of capacity to accelerate development as a response to pond drying risk is known from many amphibian species. However, very little is known about factors that might constrain the evolution of this type of plasticity, and few studies have explored to what degree plasticity might be constrained by trade-offs dictated by adaptation to different environmental conditions. We compared the ability of southern and northern Scandinavian common frog (Rana temporaria) larvae originating from 10 different populations to accelerate their development in response to simulated pond drying risk and the resulting costs in metamorphic size in a factorial laboratory experiment. We found that (i) northern larvae developed faster than the southern larvae in all treatments, (ii) a capacity to accelerate the response was present in all five southern and all five northern populations tested, but that the magnitude of the response was much larger (and less variable) in the southern than in the northern populations, and that (iii) significant plasticity costs in metamorphic size were present in the southern populations, the plastic genotypes having smaller metamorphic size in the absence of desiccation risk, but no evidence for plasticity costs was found in the northern populations. We suggest that the weaker response to pond drying risk in the northern populations is due to stronger selection on large metamorphic size as compared with southern populations. In other words, seasonal time constraints that have selected the northern larvae to be fast growing and developing, may also constrain their innate ability for adaptive phenotypic plasticity.  相似文献   

2.
1. Although there is a great deal of theoretical and empirical data about the life history responses of time constraints in organisms, little is known about the latitude‐compensating mechanism that enables northern populations' developmental rates to compensate for latitude. To investigate the importance of photoperiod on development, offspring of the obligatory univoltine damselfly Lestes sponsa from two populations at different latitudes (53°N and 63°N) were raised in a common laboratory environment at both northern and southern photoperiods that corresponded to the sites of collection. 2. Egg development time was shorter under northern photoperiod regimes for both populations. However, the northern latitude population showed a higher phenotypic plasticity response to photoperiod compared with the southern latitude population, suggesting a genetic difference in egg development time in response to photoperiod. 3. Larvae from both latitudes expressed shorter larval development time and faster growth rates under northern photoperiod regimes. There was no difference in phenotypic plastic response between northern and southern latitude populations with regard to development time. 4. Data on field collected adults showed that adult sizes decreased with an increase in latitude. This adult size difference was a genetically fixed trait, as the same size difference between populations was also found when larvae were reared in the laboratory. 5. The results suggest phenotypic plasticity responses in life history traits to photoperiod, but also genetic differences between north and south latitude populations in response to photoperiod, which indicates the presence of a latitudinal compensating mechanism that is triggered by a photoperiod.  相似文献   

3.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

4.
Organisms living in seasonal environments are often limited by the time available to complete their development. Especially individuals in northern populations may face severe time constraints in their need of completing development before the end of the growth season. Larval amphibians have been widely used in studies of phenotypic plasticity. However, their responses to changes in photoperiod, the main seasonal cue in many organisms, are unknown. In a laboratory experiment, we studied whether common frog (Rana temporaria) tadpoles originating from two populations (separated latitudinally by 1600 km) adjust their growth and development according to the progress of the season by using photoperiodic cues, and whether these responses are temperature dependent. We hypothesised that if frogs use photoperiod as a cue, they should increase growth and development rates as a response to photoperiodic treatments mimicking progressing season. Although our predictions were not verified in either of the populations, photoperiod manipulations had effects on larval life history in both populations. When exposed to progressing season treatments and high temperature, tadpoles from the southern population ceased feeding, which led to delayed metamorphosis and increased mortality. In the northern population, age at metamorphosis was unaffected by the photoperiod treatments, but growth rate until metamorphosis and metamorphic size were slightly larger in the treatments with shorter (increasing or decreasing) day length. Irrespective of photoperiod treatments, growth and development rates, size at metamorphosis and food consumption were higher in the northern as compared to the southern population. These results indicate that in contrast to several insect species, the critical life history decisions in amphibian larvae may not be strongly influenced by photoperiodic cues, but different populations seem to differ in this respect. However, the strong temperature×photoperiod interactions in several traits in the southern population suggest that the role of photoperiodic cues may be affected by other environmental factors, although the ecological significance of these differences remains unclear.  相似文献   

5.
Variation in local environments may lead to variation in the selection pressures and differentiation among local populations even at microgeographic scale. We investigated variation in temperature-induced plasticity in larval life-history traits among populations of an isolated pool frog (Rana lessonae) metapopulation in Central Sweden. Successful breeding of this northern fringe metapopulation is highly dependent on early summer temperature, however, the metapopulation shows very little variation in molecular genetic markers suggesting limited potential for local differentiation. We exposed larvae from three closely-located populations to two temperatures (20 and 25°C) in laboratory to investigate their growth and development responses to temperature variation. In general, larvae exposed to warmer temperature experienced higher survival and metamorphosed faster, but at a smaller size than those at low temperature. We found differences among the populations in both trait mean values and in the plastic responses. Among-family variation within populations was found in growth rate and time to metamorphosis, as well as in plasticity suggesting that these traits have a capacity to evolve. Our results indicate ample phenotypic variation within and among these closely-located populations despite the low molecular genetic variation. The differences in pond temperature characteristics detected in the study in the three localities may suggest that differential selection is acting in the populations. The strong differentiation found in the larval traits implies that understanding the factors that influence the potential of the populations to adapt to environmental changes may be essential for successful conservation strategies.  相似文献   

6.
Although theoretical models have identified environmental heterogeneity as a prerequisite for the evolution of adaptive plasticity, this relationship has not yet been demonstrated experimentally. Because of pool desiccation risk, adaptation of development rate is important for many amphibians. In a simulated pool-drying experiment, we compared the development time and phenotypic plasticity in development time of populations of the common frog Rana temporaria, originating from 14 neighbouring islands off the coast of northern Sweden. Drying regime of pools used by frogs for breeding differed within and among the islands. We found that the degree of phenotypic plasticity in development time was positively correlated with the spatial variation in the pool-drying regimes present on each island. In addition, local adaptation in development time to the mean drying rate of the pools on each island was found. Hence, our study demonstrates the connection between environmental heterogeneity and developmental plasticity at the island population level, and also highlights the importance of the interplay between local specialization and phenotypic plasticity depending on the local selection pressures.  相似文献   

7.
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.  相似文献   

8.
Multiple traits of stress resistance were investigated in the epedaphic springtail Orchesella cincta. Second generation adults from five laboratory populations were compared with respect to resistance to extreme temperatures and desiccation, and traits relevant to climatic adaptation. Populations were collected along a 2000-km latitudinal gradient ranging from Denmark to southern Italy and reared under the same standard laboratory conditions. Traits investigated were resistance to high and low temperature, desiccation resistance, body size and water loss rate (WLR). Results showed genetically based differences in resistance to high and low temperature, desiccation, WLR, water pool and body size between populations. Individuals from the most northern population had the highest desiccation-and cold shock resistance, and the lowest heat shock resistance. Females were significantly more desiccation resistant than males. The results of cold shock resistance showed a positive increase with lowest environmental temperature recorded at the sites of population origin, whereas heat shock resistance showed a positive increase with highest recorded temperature at the sites of population origin. Desiccation resistance increased towards the most southern and northern population, suggesting that both low and high temperature extremes affect desiccation resistance. Body mass, water pool and WLR showed interpopulation as well as sex specific variation. This provides evidence for geographical variation in stress resistance of springtails related to climatic conditions.  相似文献   

9.
Understanding the genetic and environmental bases of phenotypic variation and how they covary on local and broad geographic scales is an important goal of evolutionary ecology. Such information can shed light on how organisms adapt to different and changing environments and how life-history trade-offs arise. Surveys of phenotypic variation in 25 Littorina obtusata populations across an approximately 400-km latitudinal gradient in the Gulf of Maine revealed pronounced clines. The shells of snails from northern habitats weighed less and were thinner and weaker in compression than those of conspecifics from southern habitats. In contrast, body size (as measured by soft tissue mass) followed an opposite pattern; northern snails weighed more than southern snails. A reciprocal transplant between a northern and southern habitat revealed substantial plasticity in shell form and body mass and their respective measures of growth. Southern snails transplanted to the northern habitat produced lighter, thinner shells and more body mass than controls raised in their native habitat. In contrast, northern snails transplanted to the southern site produced heavier, thicker shells and less body mass than controls raised in their native habitat. Patterns of final phenotypic variation for all traits were consistent with cogradient variation (i.e., a positive covariance between genetic and environmental influences). However, growth in shell traits followed a countergradient pattern (i.e., a negative covariance between genetic and environmental influences). Interestingly, body growth followed a cogradient pattern, which may reflect constraints imposed by cogradient variation in final shell size and thickness. This result suggests the existence of potential life-history trade-offs associated with increased shell production. Differences in L. obtusata shell form, body mass, and their respective measures of growth are likely induced by geographic differences in both water temperature and the abundance of an invading crab predator (Carcinus maenas). Water temperatures averaged 6.8 degrees C warmer during the transplant experiment and C. maenas abundance is greater in the southern Gulf of Maine. Because both increased water temperature and crab effluent affect shell form in the same way, future experiments are needed to determine the relative importance of each. Nevertheless, it is clear that phenotypic plasticity has an important role in producing geographic variation in L. obtusata shell form. Moreover, the evolution of phenotypic plasticity in L. obtusata and other marine gastropods may be driven by architectural constraints imposed by shell form on body mass and growth.  相似文献   

10.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

11.
Phenotypic plasticity is an important mechanism via which populations can respond to changing environmental conditions, but we know very little about how natural populations vary with respect to plasticity. Here we use random‐regression animal models to understand the multivariate phenotypic and genetic patterns of plasticity variation in two key life‐history traits, laying date and clutch size, using data from long‐term studies of great tits in The Netherlands (Hoge Veluwe [HV]) and UK (Wytham Woods [WW]). We show that, while population‐level responses of laying date and clutch size to temperature were similar in the two populations, between‐individual variation in plasticity differed markedly. Both populations showed significant variation in phenotypic plasticity (IxE) for laying date, but IxE was significantly higher in HV than in WW. There were no significant genotype‐by‐environment interactions (GxE) for laying date, yet differences in GxE were marginally nonsignificant between HV and WW. For clutch size, we only found significant IxE and GxE in WW but no significant difference between populations. From a multivariate perspective, plasticity in laying date was not correlated with plasticity in clutch size in either population. Our results suggest that generalizations about the form and cause of any response to changing environmental conditions across populations may be difficult.  相似文献   

12.
Summary Body size in Drosophila is known to be closely related to a number of traits with important life history consequences, such as fecundity, dispersal ability and mating success. We examine the quantitative genetic basis of body size in three populations of the cactophilic species Drosophila buzzatii, which inhabit climatically different areas of Australia. Flies were reared individually to eliminate any common environmental component in a full-sib design with families split between two temperatures (18° and 25 °C). The means of several size measures differ significantly among populations while the genetic correlations among these traits generally do not differ, either among populations from different natural environments or between the different laboratory temperatures. This stability of correlation structure is necessary if laboratory estimates of genetic correlations are to have any connection with the expression of genetic variation in the field. The amount of variance due to genotype-by-environment interactions (family x temperature of development) varied among populations, apparently in parallel with the magnitudes of seasonal and diurnal variation in temperature experienced by the different populations. A coastal population, inhabiting a relatively thermally benign environment, showed no interaction, while two inland populations, inhabiting thermally more extreme areas, showed interaction. This interaction term is a measure of the amount of genetic variation in the degree of phenotypic plasticity of body size in response to temperature of development. Thus the inland flies vary in their ability to attain a given body size at a particular temperature while the coastal flies do not. This phenotypic plasticity is shown to be due primarily to differences among genotypes in the amount of response to the change in temperature. A possible selective basis for the maintenance of genetic variation for the levels of phenotypic plasticity is proposed.  相似文献   

13.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

14.
De Block M  Geenen S  Jordaens K  Backeljau T  Stoks R 《Genetica》2005,124(2-3):137-144
Several insect species seem to persist not only in permanent but also in temporary ponds where they face particularly harsh conditions and frequent extinctions. Under such conditions, gene flow may prevent local adaptation to temporary ponds and may promote phenotypic plasticity, or maintain apparent population persistence. The few empirical studies on insects suggest the latter mechanism, but no studies so far quantified gene flow including both pond types. We investigated the effects of pond type and temporal variation on population genetic differentiation and gene flow in the damselfly Lestes viridis in northern Belgium. We report a survey of two allozyme loci (Gpi, Pgm) with polyacrylamide gel electrophoresis in 14 populations from permanent and temporary ponds, and compared these results with similar data from the same permanent populations one year before. The data suggested that neither pond-drying regime, nor temporal variation have a substantial effect on population genetic structuring and did not provide evidence for stable population differentiation in L. viridis in northern Belgium. Gene flow estimates were high within permanent and temporary ponds, and between pond types. Our data are consistent with a source-sink metapopulation system where temporary ponds act as sinks in dry years, and are quickly recolonized after local population extinction. This may create a pattern of apparent population persistence of this species in permanent and temporary ponds without clear local adaptation.  相似文献   

15.

Background and Aims

The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert.

Methods

We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity.

Key Results

The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive.

Conclusions

The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in different environments.  相似文献   

16.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

17.
In order to assess the significance of local adaptation relative to environmental plasticity on the evolution of life history traits, we analysed the possible genetic basis of differences between pond- and stream-breeding fire salamanders (Salamandra salamandra) in Germany. These salamanders typically deposit their larvae in small streams, where they grow until they are sufficiently large to metamorphose. However, some populations in Western Germany use ponds as larval habitat. Because habitat quality of streams differs from that of ponds one expects life history differences in the pond animals, which may result either from a plastic response or through genetic differentiation (i.e. local adaptation). Using a phylogeographical analysis of mitochondrial D-loop sequences, we show that both stream and pond populations in Western Germany are derived from a single lineage that recolonized following the last glaciation. This finding suggests that pond breeding originated very recently. Our studies of habitat quality and metamorphic behaviour of larvae in natural ponds and streams disclosed that pond larvae experience a significantly reduced food supply and greater risk of drying than do stream larvae. Pond larvae metamorphose earlier at the cost of reduced mass. Common-environment experiments with pond and stream larvae show that metamorphic behaviour of pond larvae under limited-food conditions is determined genetically and is not simply a plastic response to the differing habitat conditions. These results show that phenotypic plasticity is less important than local adaptation in explaining differences in ecological diversification within this species and suggests the possibility of rapid evolution of genetic adaptations when new habitats are exploited.  相似文献   

18.
Drosophila serrata occurs along the eastern coast of Australia with a southern range boundary near Sydney. To compare levels of phenotypic variation in marginal and central populations, we examined morphological variation in populations of this species from the southern range boundary and two more northerly populations. The populations differed for wing traits and there was an increase in wing size in the marginal locations which persisted under laboratory culture. The means of wing and bristle traits increased under laboratory culture, whereas wing trait coefficients of variation and variances decreased. Heritability estimates for wing size traits tended to be lower in the field compared with the laboratory, whereas bristle and crossvein length heritabilities were similar across environments. There was evidence for heritable variation in wing and bristle traits in both the marginal and more northern populations, suggesting that genetic variation was not limiting in marginal populations. Fluctuating asymmetry (FA) was also assessed as a measure of genomic and environmental stress. There were no consistent differences among populations for the FA of individual traits, or for a total FA score summed across traits. FA levels in field parents and laboratory‐reared progeny were similar. Overall, the results do not support the conjecture that levels of phenotypic and genetic variability differ between central and marginal D. serrata populations.  相似文献   

19.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

20.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号