首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

2.
Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community.  相似文献   

3.
Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia.  相似文献   

4.
Aedes (Stegomyia) aegypti (l.) and Aedes (Stegomyia) albopictus (Skuse) are the most important vectors of the dengue and yellow-fever viruses. Both took advantage of trade developments to spread throughout the tropics from their native area: A. aegypti originated from Africa and a. albopictus from South-East Asia. We investigated the relationships between A. aegypti and A. albopictus mosquitoes based on three mitochondrial-DNA genes (cytochrome b, cytochrome oxidase I and NADH dehydrogenase subunit 5). Little genetic variation was observed for a. albopictus, probably owing to the recent spreading of the species via human activities. For A. aegypti, most populations from South America were found to be genetically similar to populations from South-East Asia (Thailand and Vietnam), except for one sample from Boa Vista (northern Amazonia), which was more closely related to samples from Africa (Guinea and Ivory Coast). This suggests that African populations of A. aegypti introduced during the slave trade have persisted in Boa Vista, resisting eradication campaigns.  相似文献   

5.
The majority of hepatitis C virus (HCV) infection results in chronic infection, which can lead to liver cirrhosis and hepatocellular carcinoma. Global burden of hepatitis C virus (HCV) is estimated at 150 million individuals, or 3% of the world’s population. The distribution of the seven major genotypes of HCV varies with geographical regions. Since Asia has a high incidence of HCV, we assessed the distribution of HCV genotypes in Thailand and Southeast Asia. From 588 HCV-positive samples obtained throughout Thailand, we characterized the HCV 5’ untranslated region, Core, and NS5B regions by nested PCR. Nucleotide sequences obtained from both the Core and NS5B of these isolates were subjected to phylogenetic analysis, and genotypes were assigned using published reference genotypes. Results were compared to the epidemiological data of HCV genotypes identified within Southeast Asian. Among the HCV subtypes characterized in the Thai samples, subtype 3a was the most predominant (36.4%), followed by 1a (19.9%), 1b (12.6%), 3b (9.7%) and 2a (0.5%). While genotype 1 was prevalent throughout Thailand (27–36%), genotype 3 was more common in the south. Genotype 6 (20.9%) constituted subtype 6f (7.8%), 6n (7.7%), 6i (3.4%), 6j and 6m (0.7% each), 6c (0.3%), 6v and 6xa (0.2% each) and its prevalence was significantly lower in southern Thailand compared to the north and northeast (p = 0.027 and p = 0.030, respectively). Within Southeast Asia, high prevalence of genotype 6 occurred in northern countries such as Myanmar, Laos, and Vietnam, while genotype 3 was prevalent in Thailand and Malaysia. Island nations of Singapore, Indonesia and Philippines demonstrated prevalence of genotype 1. This study further provides regional HCV genotype information that may be useful in fostering sound public health policy and tracking future patterns of HCV spread.  相似文献   

6.
The transmission of highly pathogenic avian influenza H5N1 virus to Southeast Asian countries triggered the first major outbreak and transmission wave in late 2003, accelerating the pandemic threat to the world. Due to the lack of influenza surveillance prior to these outbreaks, the genetic diversity and the transmission pathways of H5N1 viruses from this period remain undefined. To determine the possible source of the wave 1 H5N1 viruses, we recently conducted further sequencing and analysis of samples collected in live-poultry markets from Guangdong, Hunan, and Yunnan in southern China from 2001 to 2004. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of 73 H5N1 isolates from this period revealed a greater genetic diversity in southern China than previously reported. Moreover, results show that eight viruses isolated from Yunnan in 2002 and 2003 were most closely related to the clade 1 virus sublineage from Vietnam, Thailand, and Malaysia, while two viruses from Hunan in 2002 and 2003 were most closely related to viruses from Indonesia (clade 2.1). Further phylogenetic analyses of the six internal genes showed that all 10 of those viruses maintained similar phylogenetic relationships as the surface genes. The 10 progenitor viruses were genotype Z and shared high similarity (>/=99%) with their corresponding descendant viruses in most gene segments. These results suggest a direct transmission link for H5N1 viruses between Yunnan and Vietnam and also between Hunan and Indonesia during 2002 and 2003. Poultry trade may be responsible for virus introduction to Vietnam, while the transmission route from Hunan to Indonesia remains unclear.  相似文献   

7.
Ralstonia solanacearum biovar N2 strains isolated in Asia were compared by biochemical tests with biovar N2 strains from South America and biovar 2 (race 3) strains from Africa, America, Asia and Europe. Distinct differences were found between Asian and South American strains of biovar N2, and between Asian biovar N2 and biovar 2 strains with respect to their ability to utilize several carbon sources. Using cluster analysis based on repetitive sequence‐based polymerase chain reaction (rep‐PCR) genomic fingerprints, the Asian biovar N2 strains were divided into two groups, group 1 containing Japanese strains and group 2 containing Indonesian and Philippine strains. The fingerprints showed the genetic diversity of biovar N2 strains in Asia.  相似文献   

8.
The fungus Penicillium marneffei causes fatal systemic infections and is endemic in many parts of South-East Asia, especially Thailand. The intergenic spacer (IGS) region, the most variable region of rRNA genes, was found to be highly conserved among 58 P. marneffei strains. IGS analysis might not be suitable for molecular epidemiological analysis of P. marneffei infections.  相似文献   

9.
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013–2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014–2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.  相似文献   

10.
The emergence and rapid spread of unusual DS-1-like G1P[8] rotaviruses in Japan have been recently reported. During rotavirus surveillance in Thailand, three DS-1-like G1P[8] strains (RVA/Human-wt/THA/PCB-180/2013/G1P[8], RVA/Human-wt/THA/SKT-109/2013/G1P[8], and RVA/Human-wt/THA/SSKT-41/2013/G1P[8]) were identified in stool specimens from hospitalized children with severe diarrhea. In this study, we sequenced and characterized the complete genomes of strains PCB-180, SKT-109, and SSKT-41. On whole genomic analysis, all three strains exhibited a unique genotype constellation including both genogroup 1 and 2 genes: G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. This novel genotype constellation is shared with Japanese DS-1-like G1P[8] strains. Phylogenetic analysis revealed that the G/P genes of strains PCB-180, SKT-109, and SSKT-41 appeared to have originated from human Wa-like G1P[8] strains. On the other hand, the non-G/P genes of the three strains were assumed to have originated from human DS-1-like strains. Thus, strains PCB-180, SKT-109, and SSKT-41 appeared to be derived through reassortment event(s) between Wa-like G1P[8] and DS-1-like human rotaviruses. Furthermore, strains PCB-180, SKT-109, and SSKT-41 were found to have the 11-segment genome almost indistinguishable from one another in their nucleotide sequences and phylogenetic lineages, indicating the derivation of the three strains from a common origin. Moreover, all the 11 genes of the three strains were closely related to those of Japanese DS-1-like G1P[8] strains. Therefore, DS-1-like G1P[8] strains that have emerged in Thailand and Japan were assumed to have originated from a recent common ancestor. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like G1P[8] strains that have emerged in an area other than Japan. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] rotaviruses.  相似文献   

11.
Hepatitis B virus (HBV) genotypes and subgenotypes may vary in geographical distribution and virological features. Previous investigations, including ours, showed that HBV genotypes B and C were respectively predominant in South and North China, while genotypes A and D were infrequently detected and genotype G was not found. In this study, a novel A/C/G intergenotype was identified in patients with chronic HBV infection in Guilin, a city in southern China. Initial phylogenetic analysis based on the S gene suggested the HBV recombinant to be genotype G. However, extended genotyping based on the entire HBV genome indicated it to be an A/C/G intergenotype with a closer relation to genotype C. Breakpoint analysis using the SIMPLOT program revealed that the recombinant had a recombination with a arrangement of genotypes A, G, A and C fragments. Compared with the HBV recombinants harboring one or two genotype G fragments found in Asian countries, this Guilin recombinant was highly similar to the Vietnam (98–99%) and Long An recombinants (96–99%), but had a relatively low similarity to the Thailand one (89%). Unlike those with the typical genotype G of HBV, the patients with the Guilin recombinant were seropositive for HBeAg. Moreover, a relatively high HBV DNA viral load (>2×106 IU/ml) was detected in the patients, and the analysis of viral replication capacity showed that the Guilin recombinant strains had a competent replication capacity similar to genotypes B and C strains. These findings can aid in not only the clarification of the phylogenetic origin of the HBV recombinants with the genotype G fragment found in Asian countries, but also the understanding of the virological properties of these complicated HBV recombinants.  相似文献   

12.
广东人禽流感H5N1毒株M基因特性、进化和变异   总被引:1,自引:0,他引:1  
通过对人禽流感H5N1毒株M基因序列的变异分析,揭示毒株M基因特征与进化。检测广东地区人禽流感H5N1毒株M基因核苷酸序列,同时检索全球人禽流感H5N1毒株M基因序列,采用DNAStar5.0软件对检索的人禽流感H5N1毒株M基因核苷酸序列进行比对和分析;并结合流行病学资料对变异毒株进行进化速度分析。结果发现,1997~2006年53株毒株M1基因和51株毒株M2核苷酸序列同源性均分成两组,1997年毒株为第一组(GⅠ),2003~2006年香港、越南、泰国、印尼、中国大陆、土耳其、伊拉克、阿塞拜疆、埃及毒株为第二组(GⅡ)。M1基因20个氨基酸位点置换,占7.94%(20/252),其中2003~2006年毒株M1基因有9个氨基酸位点不同于1997年毒株;M2基因22个氨基酸置换,占22.7%,其中2003~2006年毒株M2基因有4个氨基酸不同于1997年毒株。M2基因Ks值为26.8×10-6~42.6×10-6Nt/d,Ka值为4.39×10-6~6.98×10-6Nt/d;而M1基因的同义突变速度均远高于错义突变速度,显示M1基因受到机体免疫压力较小;检验发现M1基因进化存在负选择性压力。2003~2006年毒株M1基因通过氨基酸S224N置换,增加一个糖基化位点NSS224-226;而来自印尼的8株毒株M2基因发生C50F置换,引起蛋白二级结构改变。1997年中国香港人禽流感毒株自当时出现后,便未在以后人禽流感疫情中出现。2003~2006年毒株M1基因增加糖基化位点NSS224-226,可能与毒株致病性有关。人禽流感H5N1毒株M基因在自然界变异频繁,可能影响H5N1毒株的人-人传播能力。  相似文献   

13.
Emergence of avian H1N1 influenza viruses in pigs in China.   总被引:20,自引:1,他引:19       下载免费PDF全文
Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human viral genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates that these genes form an Asian sublineage of the Eurasian avian lineage, suggesting that these viruses are an independent introduction into pigs in Asia. The presence of avian influenza viruses in pigs in China places them in an optimal position for transmission to humans and may serve as an early warning of the emergence of the next human influenza virus pandemic.  相似文献   

14.
Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004–2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.  相似文献   

15.
One major mechanism by which Rotavirus A (RVA) evolves is genetic reassortment between strains with different genotype constellations. However, the parental strains of the reassortants generated have seldom been identified. Here, the whole genome of two suspected reassortants, RVA/Human‐wt/VNM/SP127/2013/G1P[4] and RVA/Human‐wt/VNM/SP193/2013/G1P[4], with short RNA electropherotypes were examined by Illumina MiSeq sequencing and their ancestral phylogenies reconstructed. Their genotype constellation, G1‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2, indicated that they were G1 VP7 mono‐reassortants possessing DS‐1‐like genetic backbones. The two strains were ≧99.7% identical across the genome. While their VP7 genes were ≧99.7 identical to that of a Wa‐like strain RVA/Human‐wt/VNM/SP110/2012/G1P[8] which co‐circulated during the 2012/2013 season, 10 genes were ≧99.8% identical to that of the DS‐1‐like strains RVA/Human‐wt/VNM/SP015/2012/G2P[4] (and SP108) that co‐circulated during the season. The identities were consistent with the phylogenetic relationships observed between the genes of the reassortants and those of the afore‐mentioned strains. Consequently, the G1P[4] strains appear to have been generated by genetic reassortment between SP110‐like and SP015‐like strains. In conclusion, this study provides robust molecular evidence for the first time that G1P[4] strains detected in Hanoi Vietnam were generated by inter‐genogroup reassortment between co‐circulating G1P[8] and G2P[4] strains within the same place and season.
  相似文献   

16.
ABSTRACT Background. Thailand is at the cultural cross roads between East and South Asia. It has been suggested that this is also the region where the predominant Helicobacter pylori (H. pylori) genotype changes from East Asian to South Asian. Methods. We compared the molecular epidemiology and outcome of H. pylori infections among different ethnic groups in Thailand (Thai, Thai-Chinese and Chinese). H. pylori isolates were genotyped by polymerase chain reaction based on cagA, cag right end junction and vacA genotypes. Results. Ninety-eight isolates from 38 ethnic Thai, 20 ethnic Chinese and 40 Thai-Chinese were categorized into East Asian (45%), South/Central Asian (26%), Western (1%) or mixed type (29%). The East Asian genotype was the most common among Chinese (85%) and Thai-Chinese (55%) (p <.01 compared to ethnic Thai). The ethnicity of the mother among mixed Thai-Chinese marriages predicted the genotype of the child's H. pylori (e.g. when the mother was Chinese, 84% had East Asian type vs. 29% when the mother was Thai) (p <.001). Gastric cancer was common among ethnic Chinese with East Asian genotype (e.g. all Chinese with gastric cancer or peptic ulcer disease had East Asian genotype, whereas only 40% of Chinese with gastritis had this genotype). Conclusions. Immigration, intermarriage and the variety of H. pylori genotypes in Thailand suggest that Thailand is an ideal site for epidemiological studies attempting to relate H. pylori genotypes and host factors to outcome. Our data also support the hypothesis that the primary caretaker of the children is most likely the source of the infection.  相似文献   

17.
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.  相似文献   

18.
Because imminent introduction into Vietnam of a vaccine against Rotavirus A is anticipated, baseline information on the whole genome of representative strains is needed to understand changes in circulating strains that may occur after vaccine introduction. In this study, the whole genomes of two G2P[4] strains detected in Nha Trang, Vietnam in 2008 were sequenced, this being the last period during which virtually no rotavirus vaccine was used in this country. The two strains were found to be > 99.9% identical in sequence and had a typical DS‐1 like G2‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2 genotype constellation. Analysis of the Vietnamese strains with > 184 G2P[4] strains retrieved from GenBank/EMBL/DDBJ DNA databases placed the Vietnamese strains in one of the lineages commonly found among contemporary strains, with the exception of the NSP2 and NSP4 genes. The NSP2 genes were found to belong to a previously undescribed lineage that diverged from Chinese sheep and goat rotavirus strains, including a Chinese rotavirus vaccine strain LLR with 95% nucleotide identity; the time of their most recent common ancestor was 1975. The NSP4 genes were found to belong, together with Thai and USA strains, to an emergent lineage (VIII), adding further diversity to ever diversifying NSP4 lineages. Thus, there is a need to enhance surveillance of locally‐circulating strains from both children and animals at the whole genome level to address the effect of rotavirus vaccines on changing strain distribution.  相似文献   

19.

Background

Although a previous study predicted that Japanese encephalitis virus (JEV) originated in the Malaysia/Indonesia region, the virus is known to circulate mainly on the Asian continent. However, there are no reported systematic studies that adequately define how JEV then dispersed throughout Asia.

Methodology/Principal Findings

In order to understand the mode of JEV dispersal throughout the entire Asian continent and the factors that determine the dispersal characteristics of JEV, a phylogenetic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on all available JEV E gene sequences in GenBank, plus strains recently isolated in China. Here we demonstrate for the first time that JEV lineages can be divided into four endemic cycles, comprising southern Asia, eastern coastal Asia, western Asia, and central Asia. The isolation places of the viruses in each endemic cycle were geographically independent regardless of years, vectors, and hosts of isolation. Following further analysis, we propose that the southernmost region (Thailand, Vietnam, and Yunnan Province, China) was the source of JEV transmission to the Asian continent following its emergence. Three independent transmission routes from the south to north appear to define subsequent dispersal of JEV. Analysis of JEV population dynamics further supports these concepts.

Conclusions/Significance

These results and their interpretation provide new insights into our understanding of JEV evolution and dispersal and highlight its potential for introduction into non-endemic areas.  相似文献   

20.
The entire nucleotide sequences of 70 hepatitis B virus (HBV) isolates of genotype B (HBV/B), including 38 newly determined and 32 retrieved from the international DNA database (DDBJ/EMBL/GenBank), were compared phylogenetically. Two subgroups of HBV/B were identified based on sequence divergence in the precore region plus the core gene, one with the recombination with genotype C and the other without it. The analysis over the entire genome of HBV/B by the SimPlot program located the recombination with genotype C in the precore region plus the core gene spanning nucleotide positions from 1740 to 1838 to 2443 to 2485. Within this genomic area, HBV/B strains with the recombination had higher nucleotide and amino acid homology to genotype C than those without the recombination (96.9 versus 91.1% in nucleotides and 97.0 versus 92.9% in amino acids). There were 29 HBV/B strains without the recombination, and they were all recovered from carriers in Japan. The remaining 41 HBV/B isolates having the recombination with genotype C were from carriers in China (12 strains), Hong Kong (3 strains), Indonesia (4 strains), Japan (3 strains), Taiwan (4 strains), Thailand (3 strains), and Vietnam (12 strains). Due to the frequency of the distribution of HBV/B without the recombination (29 of 32 isolates, or 91%) and the fact that it was exclusive to Japan, it was provisionally classified into the Bj (j standing for Japan) subgroup, and HBV/B with the recombination was classified into the Ba (a for Asia) subgroup. Virological differences between HBV/Bj and HBV/Ba may be reflected in the severity of clinical disease in the patients infected with HBV of genotype B, which seems to be under strong geographic influences in Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号