首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (A N) and stomatal conductance (g s) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.  相似文献   

2.
Liu  M.Z.  Jiang  G.M.  Niu  S.L.  Li  Y.G.  Gao  L.M.  Ding  L.  Peng  Y. 《Photosynthetica》2003,41(2):293-296
Net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and leaf water potential (Ψl) of an annual pioneer C4 grass (Agriophyllum squarrosum) were compared under different simulated precipitation events in a field of Hunshandak Sandland, China. The increase of soil water content (SWC) had significant effect on these physiological traits (p<0.001). In the vegetative stage, the values of P N, E, and g s went up sharply when SWC increased at the beginning, while they went down with continuous increase of SWC. P N, E, and g s increased 1.4, 1.7, and 1.7 fold, respectively, with SWC range from 6.7 to 11.6 %. In the reproductive stage, similar trends were found, except for the climate with a higher SWC. This indicated that A. squarrosum was very sensitive to the small increment of SWC which might have a large photosynthetic potential. Ψl increased by about 8 % as the SWC changed from 6.7 to 8.8 %, and then maintained a steady level when the SWC was higher than 8.8 %, while the values of P N, E, and g s kept increasing even after this SWC. This might indicate that the adjustment of Ψl response to the changes of SWC lagged that of the photosynthetic parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The net photosynthetic rate (PN), stomatal conductance (gs) and transpiration (E) ofHardwickia binata Roxb. leaves were reduced due to decrease in the leaf water potential (ψw) from -2.0 to - 5.7 MPa. PN partially recovered in the treated plants upon rewatering. Decrease in gs due to water stress may be the main factor for reduction of PN. This work was supported by a financial grant from the MNES, India to KP.  相似文献   

4.
Leidi  E.O. 《Photosynthetica》2002,40(3):375-381
Gas exchange, water relations, and leaf traits were studied in the tuberous-root producing legumes ahipa (Pachyrhizus ahipa) and yambean (P. erosus) under different environmental conditions. Differences in leaf traits (hairiness, leaf area, areal leaf mass, stomatal density) and paraheliotropism were found between ahipa and yambean. Under sufficient water supply, the increase in air temperature and decrease in air humidity increased stomatal conductance (g s) and net photosynthetic rate (P N) in yambean but reduced them in ahipa. In a drying soil (14 d after irrigation), inter-specific variation in gas exchange was only observed in the early morning, and yambean showed a greater sensitivity to water restriction than ahipa. High g s at low humidity increased P N of P. erosus but resulted in lower water-use efficiency (WUE). However, long-term WUE, estimated by leaf carbon isotope discrimination, showed little variation between species. Daily-irrigated ahipa and yambean grown in the greenhouse did not show significant differences in gas exchange. However, leaf temperature was significantly greater in yambean than in ahipa while a steepper relationship between E and P N and g s was observed in ahipa.  相似文献   

5.
Srinivas  P.  Smith  B.N.  Swamy  P.M. 《Photosynthetica》2000,37(4):633-637
The net photosynthetic rate (P N), intercellular CO2 concentration (C i), stomatal conductance (g s), transpiration rate (E), water use efficiency (WUE), and leaf biomass production of four American flue-cured tobacco (Nicotiana tabacum L.) cultivars K 326, K 358, and Speight G 28 were compared with three local Indian cultivars 16/103, Special FCV, and PCT-7, during 1994 and 1995 crop seasons under irrigated and rainfed production systems (Northern light soils, NLS, and Karnataka light soils, KLS) in India. By comparison, the American tobacco cv. K 326 showed the highest P N and g s. A positive correlation was found between P N and biomass production in all the varieties tested (r = 0.55 in NLS and 0.73 in KLS). The American cultivars were superior than the local cultivars in their biomass production and P N under Indian farming conditions.  相似文献   

6.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

7.
At the grain-filling stage, net photosynthetic rate (P N), stomatal conductance (g s), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, P N in leaf middle region was higher than in its upper region, and leaf basal region had the lowest P N value. The differences in g s and CE were similar. P N, g s, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between P N and CE was much higher than that between P N and g s in both cases, and P N was negatively correlated with intercellular CO2 concentration (C i). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers P N was positively correlated with g s, but negatively correlated with C i. Thus g s is not the determinant of the photosynthetic capacity in rice leaves.The study was supported by the State Key Basic Research and Development Plan (No.G1998010100).  相似文献   

8.
Singh  B.  Singh  G. 《Photosynthetica》2003,41(3):407-414
Biomass, leaf water potential (l), net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf to air temperature difference (T diff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (Pd) and midday (mid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. P N, E, and g s declined and T diff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. P N increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas g s decreased throughout the day from 08:00 to 17:00. P N and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period.  相似文献   

9.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

10.
Plant growth, contents of photosynthetic pigments, photosynthetic gas exchange, and chlorophyll (Chl) fluorescence in soybean [Glycine max (L.) Merr. cv. Heinong37] were investigated after it was inoculated with Sinorhizobium fredii USDA191 or treated with 5 mM (NH4)2SO4 (N5) and 30 mM (NH4)2SO4 (N30), respectively. In the plants following N5 fertilization, not only plant biomass, leaf area, and Chl content, but also net photosynthetic rate (P N), stomatal conductance (g s), carboxylation efficiency (CE), maximum photochemical efficiency (Fv/Fm) of photosystem 2 (PS2), and quantum yield of PS2 (ΦPS2) were markedly improved as compared with the control plants. There were also positive effects on plant growth and plant photosynthesis after rhizobia inoculation, but the effects were much less than those of N5 fertilization. For N30 plants there were no significant positive effects on plant growth and photosynthetic capacity. Plant biomass, P N, and g s were similar to those of N-limited (control) plants. ΦPS2 and photochemical quenching (qP) were obviously declined while content of carotenoids and non-photochemical quenching (qN) were significantly enhanced in N30 treated plants. This indicated that excess N supply may cause some negative effects on soybean plants.  相似文献   

11.
Ashraf  M.  Arfan  M.  Shahbaz  M.  Ahmad  Ashfaq  Jamil  A. 《Photosynthetica》2002,40(4):615-620
Thirty-days-old plants of two cultivars of okra (Hibiscus esculentus L.), Sabzpari and Chinese-red, were subjected for 30 d to two water regimes (100 and 60 % field capacity). Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Both the leaf pressure potential and osmotic adjustment were much lower in Chinese-red than those in Sabzpari. Chlorophyll (Chl) b content increased, whereas Chl a content remained unchanged and thus Chl a/b ratios were reduced in both lines. Drought stress also caused a significant reduction in net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and water use efficiency (WUE) especially in cv. Sabzpari. The lines did not differ in intrinsic WUE (P Ngs) or intercellular/ambient CO2 ratio. Overall, the growth of two okra cultivars was positively correlated with P N, but not with g s or P N/E, and negatively correlated with osmotic adjustment.  相似文献   

12.
Water and nitrogen (N) deficiency are two major constraints limiting the yield and quality of many oilseed crops worldwide. This study was designed to assess the response of Camelina sativa (L.) Crantz to the availability of N and water resources on photosynthesis and yield parameters. All the measured variables, which included plant height, root and shoot dry matter, root:shoot ratio, xylem pressure potential (XPP), yield components, photosynthetic parameters, and instantaneous water-use efficiency (WUE) were remarkably influenced by water and nitrogen supply. Net photosynthetic rate (P N) and yield components were significantly decreased more by water deficit than by N deficiency. XPP, stomatal conductance (g s), and intercellular CO2 concentration (C i) decreased substantially as the water deficit increased irrespective of the level of N application. WUE at the high N supply [100 and 150 kg(N) ha−1] dropped in a large degree as the increased water deficit due to a larger decrease in P N than transpiration rate (E). The results of this study suggest that the regulative capacity of N supply on photosynthetic and plant growth response is significantly affected by soil water status and C. sativa is more sensitive to water deficit than N supply.  相似文献   

13.
Net photosynthetic rate (P N), transpiration rate (E), water use efficiency (WUE), stomatal conductance (g s), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low gs. Unlike S. oblata, the maximal photosynthetic rate (P max) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower P N together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

14.
Changes in net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentrations (Ci), transpiration rate (E) and water use efficiency (WUE) were measured in Plantago major L. plants grown under sufficient soil water supply or under soil water stress conditions. The plants had high PN in a wide range of soil water potential and temperature regimes. Soil water had little effect on PN under ambient CO2 concentrations, which was explained by a high carboxylation rate, but increased the dark respiration rate. Carboxylation activity at low Ci depended on RuBP regeneration, whereas at high Ci it depended on the phosphate regeneration rate. The gs and E values were low in plants under stress as compared to the controls that resulted in an increase of WUE. The results obtained show that Plantago major plants have different ways of adaptation to soil water deficit conditions.  相似文献   

15.
Ge  Y.  Lu  Y.-J.  Liao  J.-X.  Guan  B.-H.  Chang  J. 《Photosynthetica》2004,42(3):387-391
We compared the photosynthetic traits in response to soil water availability in an endangered plant species Mosla hangchowensis Matsuda and in a weed Mosla dianthera (Buch.-Ham.) Maxim. The highest diurnal mean net photosynthetic rate (P Nmean), stomatal conductance (g s), and water use efficiency (WUE) of both species occurred at 60 % soil water holding capacity (WHC), while the lowest values occurred at 20 % WHC. The P Nmean, g s, and chlorophyll (Chl) a and b contents of M. hangchowensis were lower than those of M. dianthera, while the physiological plasticity indices were higher than those of M. dianthera. M. hangchowensis had strong adaptability to the changing soil water status but weak extending population ability in its habitats because of the low P Nmean, which may be one of the causes of its endangerment.  相似文献   

16.
Deng  Xi-ping  Shan  Lun  Ma  Yong-qing  Inanaga  Shinobu 《Photosynthetica》2000,38(2):187-192
Yields of wheat in semiarid and arid zones are limited by drought, and water condition is very important at each stage of development. Studies carried out at Loess Plateau in the northwestern part of China indicated that yield of spring wheat (Triticum aestivum L.) cv. Dingxi 81-392 was reduced by 41% when subjected to water stress. The effects of two water regimens on net photosynthetic rate (P N), stomatal conductance (g s), and intercellular CO2 concentration (C i) were investigated at the jointing, booting, anthesis, and grain filling stages. Low soil moisture in comparison to adequate one had invariably reduced P N during the diurnal variations at the four growth stages. P N and g s in both soil moisture regimes was maximally reduced at midday. C i and the stomatal limitation fluctuated remarkably during photosynthesis midday depression processes, especially at the grain filling stage. Hence atmospheric drought at midday was one of the direct causes inducing stomata closure and the g s depression, but it was beneficial for maintaining stable intrinsic water use efficiency. Fluctuation in C i implicated that non-stomatal limitation also plays an important role during the period of photosynthesis midday depression. Consequently stomatal and/or non-stomatal limitation are the possible cause of the midday photosynthesis decline.  相似文献   

17.
Net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) in an adult oil palm (Elaeis guineensis) canopy were highest in the 9th leaf and progressively declined with leaf age. Larger leaf area (LA) and leaf dry mass (LDM) were recorded in middle leaves. P N showed a significant positive correlation with g s and a negative relationship with leaf mass per area (ALM). The oil palm leaf remains photosynthetically active for a longer time in the canopy which contributes significantly to larger dry matter production in general and greater fresh fruit bunch yields in particular.  相似文献   

18.
Anderson  P.H.  Pezeshki  S.R. 《Photosynthetica》2000,37(4):543-552
Under greenhouse conditions, seedlings of three forest species, baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to an intermittent flooding and subsequent physiological and growth responses to such conditions were evaluated. Baldcypress showed no significant reductions in stomatal conductance (g s) or net photosynthetic rate (P N) in response to flood pulses. In nuttall oak seedlings g s and P N were significantly decreased during periods of inundation, but recovered rapidly following drainage. In contrast, in swamp chestnut oak g s was reduced by 71.8 % while P N was reduced by 57.2 % compared to controls. Baldcypress displayed no significant changes in total mass while oak species had significantly lower leaf and total mass compared to their respective controls. Thus baldcypress and nuttall oak showed superior performance under frequent intermittent flooding regimes due to several factors including the ability for rapid recovery of gas exchange soon after soil was drained. In contrast, swamp chestnut oak seedlings failed to resume gas exchange functions after the removal of flooding.  相似文献   

19.
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) μmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Two-month-old seedlings of Sophora davidii were subjected to a randomized complete block design with three water (80, 40, and 20 % of water field capacity, i.e. FC80, FC40, and FC20) and three N supply [N0: 0, Nl: 92 and Nh: 184 mg(N) kg−1(soil)] regimes. Water stress produced decreased leaf area (LA) and photosynthetic pigment contents, inhibited photosynthetic efficiency, and induced photodamage in photosystem 2 (PS2), but increased specific leaf area (SLA). The decreased net photosynthetic rate (P N) under medium water stress (FC40) compared to control (FC80) might result from stomatal limitations, but the decreased P N under severe water deficit (FC20) might be attributed to non-stomatal limitations. On the other hand, N supply could improve photosynthetic capacity by increasing LA and photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. Moreover, N supply did a little in alleviating photodamages to PS2 caused by water stress. Hence water stress was the primary limitation in photosynthetic processes of S. davidii seedlings, while the photosynthetic characters of seedlings exhibited positive responses to N supply. Appropriate N supply is recommended to improve photosynthetic efficiency and alleviate photodamage under water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号