首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was designed to characterize the effect of the extracellular matrix molecule versican on chondrocyte morphology, using the well-studied chondrocyte cell culture system. When cultured chondrocytes reverted or "dedifferentiated" to a fibroblast-like morphology, we found that versican expression was significantly enhanced. Transfection of chondrocytes, isolated from embryonic chicken sterna, with a chicken miniversican construct accelerated the reversion process, while expression of an antisense construct inhibited it. A mutant miniversican lacking two epidermal growth factor-like motifs (versicanDeltaEGF) promoted differentiation, as shown by morphological changes and changes in the expression of other extracellular matrix molecules. A truncated versican mutant, the G3DeltaEGF, a G3 domain lacking its two epidermal growth factor-like motifs, also enhanced differentiation. This effect is related to G3DeltaEGF-induced change in cytoskeleton, since transfected cells exhibited misassembly of actin filaments. This article thus provides the first evidence that versican modulates chondrocyte morphology via changes in cytoskeletal structure, and may imply that extracellular matrix molecules play an important role in cell differentiation.  相似文献   

2.
Cell adhesion and proliferation mediated through the G1 domain of versican   总被引:8,自引:0,他引:8  
We have demonstrated previously that versican stimulated cell proliferation through the G3 domain. In these experiments, we show that versican mini-gene-transfected cell lines exhibited decreased cell-substratum interaction and increased cell proliferation. Exogenous addition of growth medium containing the versican gene product produced the same results. Because the G1 domain of versican is structurally similar to the G1 domain of aggrecan and to link protein, both of which play role in cell adhesion, we hypothesized that versican's proliferative effects may be a consequence of its ability to reduce cell adhesion, and may be mediated through the G1 domain. To investigate this, we expressed a G1 construct in NIH3T3 cells and showed that it reduced cell adhesion and enhanced cell proliferation. We then demonstrated that deletion of the G1 domain from versican greatly, but not completely, reversed the effects of versican: G1-deletion mutants of versican show slightly reduced amounts of cell adhesion and slightly increased rates of proliferation. We concluded that versican can stimulate cell proliferation via two mechanisms: through two EGF-like motifs in the G3 domain which play a role in stimulating cell growth, and through the G1 domain, which destabilizes cell adhesion and facilitates cell growth. We purified the G1 product with an affinity column and demonstrated that it reduced cell adhesion and enhanced cell proliferation.  相似文献   

3.
Hyaluronate binding properties of versican.   总被引:7,自引:0,他引:7  
We have previously cloned a large chondroitin sulfate proteoglycan (versican) from human fibroblasts. The primary sequence shows that the N terminus contains sequence homology with known hyaluronate-binding molecule, suggesting that versican can bind hyaluronate. To test this hypothesis we have reconstructed a full-length versican cDNA and a versican cDNA fragment encoding the N terminus and have transfected Chinese hamster ovary cells and mouse 3T3 fibroblasts, respectively, with these constructs. The transfected Chinese hamster ovary cells make a proteoglycan shown to be versican by enzymatic and immunologic analysis. No corresponding proteoglycan was seen in the control cells. Using hyaluronate affinity chromatography, we show that recombinant versican specifically binds hyaluronate and does not bind to heparin or chondroitin sulfate. The transfected fibroblasts make a 78-kDa truncated form of versican that also binds hyaluronate and does not bind the related polysaccharides, showing that the hyaluronate binding activity resides at the N terminus of versican. The binding of versican to hyaluronate is substrate-concentration dependent and time dependent and can be competed with unlabeled versican. The dissociation constant for versican binding to hyaluronate was determined to be 4 x 10(-9) M.  相似文献   

4.
Yang BL  Yang BB  Erwin M  Ang LC  Finkelstein J  Yee AJ 《Life sciences》2003,73(26):3399-3413
The functional role of versican in influencing intervertebral disc cell adhesion and proliferation was analyzed in bovine intervertebral disc. We have previously demonstrated the C-terminal globular G3 (or selectin-like) domain of versican to influence mesenchymal chondrogenesis and fibroblast proliferation in vitro. For this study, a versican G3 expression construct was generated to examine the role of the G3 domain of versican. Nucleus pulposus and annulus fibrosus cells were isolated from adult bovine caudal discs using sequential enzymatic digestion and versican expression characterized by RT-PCR. In cell proliferation assays, we observed that there was greater cellular proliferation in the presence of versican G3 for both disc cell types. The higher proliferation rate of annulus fibrosus cells when compared to nucleus pulposus cells seeded in monolayer supports heterogeneity of intervertebral disc cell populations. The presence of versican G3 construct enhanced the adhesion of isolated nucleus pulposus and annulus fibrosus cells approximately 4 to 6 fold, respectively. Cellular adhesion was greater in the presence of versican G3 in a dose dependent manner. G3 product was purified using affinity columns, and the purified G3 also enhanced cell adhesion.  相似文献   

5.
The large aggregating chondroitin sulfate proteoglycans, including aggrecan, versican (PG-M), neurocan, and brevican, are characterized by N-terminal and C-terminal globular (or selectin-like) domains known as the G1 and G3 domains, respectively. For this study, we generated a series of expression constructs containing various combinations of chicken versican/PG-M domains and a leading peptide of link protein in order to examine the roles of the G1 and G3 domains in versican function. In transfection studies, we observed that the presence of the G1 domain was sufficient to inhibit product secretion, while the G3 domain enhanced this process. We also demonstrated that the G1 domain inhibited the attachment of glycosaminoglycan chains to the core proteins, while the G3 domain enhanced this process. Further studies revealed that inhibition of secretion by G1 was mediated by its two tandem repeats, while G3's promotion of glycosaminoglycan chain attachment was apparently dependent on G3's complement-binding protein (CBP)-like motif. The modulatory effects of these two molecular domains may contribute to versican's biological activities.  相似文献   

6.
Versican is a large (1-2 x 10(6) Da) chondroitin-sulfate proteoglycan that can form large aggregates by means of interaction with hyaluronan and also binds to a series of other extracellular matrix proteins, chemokines and cell-surface molecules. Versican is a multifunctional molecule with roles in cell adhesion, matrix assembly, cell migration and proliferation. Characterization of the binding interactions mediated by the various domains of versican is a first step towards understanding the functions of versican and interacting molecules in the extracellular matrix. In this study we investigated a recombinant construct corresponding to the C-type lectin domain of versican and demonstrated a calcium-dependent self-association of this region by blot overlay and plasmon surface resonance assays. Electron microscopy provided further evidence of the relevance of the binding reaction by demonstrating a mixture of monomers, dimers and complex aggregates of recombinant versican C-type lectin domain. This binding reaction could contribute to the ability of versican to organize formation of the proteoglycan extracellular matrix by inducing binding of individual versican molecules or by modulating binding reactions to other matrix components.  相似文献   

7.
Versican is a large chondroitin sulfate proteoglycan belonging to the lectican family. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We have shown that the versican V1 isoform not only enhanced cell proliferation, but also modulated cell cycle progression and protected the cells from apoptosis. Futhermore, the V1 isoform was able to not only activate proto-oncogene EGFR expression and modulate its downstream signaling pathway, but also induce p27 degradation and enhance CDK2 kinase activity. As well, the V1 isoform down-regulated the expression of the proapoptotic protein Bad. By contrast, the V2 isoform exhibited opposite biological activities by inhibiting cell proliferation and down-regulated the expression of EGFR and cyclin A. Furthermore, V2 did not contribute apoptotic resistance to the cells. In light of these results, we are reporting opposite functions for the two versican isoforms whose expression is differentially regulated. Our studies suggest that the roles of these two isoforms are associated with the subdomains CSbeta and CSalpha, respectively. These results were confirmed by silencing the expression of versican V1 with small interfering RNA (siRNA), which abolished V1-enhanced cell proliferation and V1-induced reduction of apoptosis.  相似文献   

8.
9.
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.  相似文献   

10.
Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.  相似文献   

11.
Link protein has greater affinity for versican than aggrecan   总被引:6,自引:0,他引:6  
The function of link protein in stabilizing the interaction between aggrecan and hyaluronan to form aggrecan aggregates, via the binding of link protein to the aggrecan G1 domain and hyaluronan, is well established. However, it is not known whether link protein can function with similar avidity with versican, another member of the large hyaluronan-binding proteoglycan family that also binds to hyaluronan via its G1 domain. To address this issue, we have compared the interaction of the versican and aggrecan G1 domains with link protein and hyaluronan using recombinant proteins expressed in insect cells and BIAcore analysis. The results showed that link protein could significantly improve the binding of both G1 domains to hyaluronan and that its interaction with VG1 is of a higher affinity than that with AG1. These observations suggest that link protein may function as a stabilizer of the interaction, not only between aggrecan and hyaluronan in cartilage, but also between versican and hyaluronan in many tissues.  相似文献   

12.
13.
G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4.In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres.In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions.These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications.  相似文献   

14.
Versican plays a role in tumor cell proliferation and adhesion and may also regulate cell phenotype. Furthermore, it is one of the pivotal proteoglycans in mesenchymal condensation during prechondrogenesis. We have previously demonstrated accumulation of versican protein in myoepithelial-like spindle cell proliferations and myxoid tissues of complex and mixed mammary tumors of dogs. The objective of this study was to investigate whether the high expression of versican relates to prechondrogenesis in these tissues. Therefore, we aimed to identify cartilage markers, such as collagen type II and aggrecan both at mRNA and protein level in relation to versican. The neopitope of chondoitin-6-sulphate (3B3) known to be generated in developing cartilage has been investigated by immunohistochemisty and a panel of antibodies were used to characterize the phenotype of cells that are involved in cartilage formation. In addition, co-localization of versican with hyaluronan and link protein was studied. RT-PCR revealed upregulation of genes of versican, collagen type II and aggrecan in neoplastic tissues, especially in complex and mixed tumors. Immunohistochemistry showed the expression of cartilage biomarkers not only in the cartilagenous tissues of mixed tumors, but also in myoepitheliomas and in the myoepithelial-like cell proliferations and myxoid areas of complex and mixed tumors. The results show the cartilagenous differentiation of complex tumors and myoepitheliomas and indicate that the myxoid tissues and myoepithelial-like cell proliferations are the precursor tissues of the ectopic cartilage in mixed tumors. Furthermore, we suggest that cartilage formation in canine mammary tumors is a result of (myo)epithelial to mesenchymal transition.  相似文献   

15.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

16.
Pleiotrophin (PTN, Ptn) is an 18kDa secretory cytokine that is expressed in many human cancers, including glioblastoma. In previous experiments, interruption of the constitutive PTN signaling in human U87MG glioblastoma cells that inappropriately express endogenous Ptn reversed their rapid growth in vitro and their malignant phenotype in vivo. To seek a mechanism for the effect of the dominant-negative PTN, flow cytometry was used to compare the profiles of U87MG cells and four clones of U87MG cells that express the dominant-negative PTN (U87MG/PTN1-40 cells); here, we report that the dominant-negative PTN in U87MG cells induces tetraploidy and aneuploidy and arrests the tetraploid and aneuploid cells in the G1 phase of the cell cycle. The data suggest that PTN signaling may have a critical role in chromosomal segregation and cell cycle progression; the data suggest induction of tetraploidy and aneuploidy in U87MG glioblastoma cells may be an important mechanism that contributes to the loss of the malignant phenotype of U87MG cells.  相似文献   

17.
Sphingosine 1-phosphate (S1P) induced the inhibition of glioma cell migration. Here, we characterized the signaling mechanisms involved in the inhibitory action by S1P. In human GNS-3314 glioblastoma cells, the S1P-induced inhibition of cell migration was associated with activation of RhoA and suppression of Rac1. The inhibitory action of S1P was recovered by a small interference RNA specific to S1P2 receptor, a carboxyl-terminal region of Gα12 or Gα13, an RGS domain of p115RhoGEF, and a dominant-negative mutant of RhoA. The inhibitory action of S1P through S1P2 receptors was also observed in both U87MG glioblastoma and 1321N1 astrocytoma cells, which have no protein expression of a phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These results suggest that S1P2 receptors/G12/13-proteins/Rho signaling pathways mediate S1P-induced inhibition of glioma cell migration. However, PTEN, recently postulated as an indispensable molecule for the inhibition of cell migration, may not be critical for the S1P2 receptor-mediated action in glioma cells.  相似文献   

18.
Distinct interaction of versican/PG-M with hyaluronan and link protein   总被引:7,自引:0,他引:7  
The proteoglycan aggregate is the major structural component of the cartilage matrix, comprising hyaluronan (HA), link protein (LP), and a large chondroitin sulfate (CS) proteoglycan, aggrecan. Here, we found that another member of aggrecan family, versican, biochemically binds to both HA and LP. Functional analyses of recombinant looped domains (subdomains) A, B, and B' of the N-terminal G1 domain revealed that the B-B' segment of versican is adequate for binding to HA and LP, whereas A and B-B' of aggrecan bound to LP and HA, respectively. BIAcore trade mark analyses showed that the A subdomain of versican G1 enhances HA binding but has a negligible effect on LP binding. Overlay sensorgrams demonstrated that versican G1 or its B-B' segment forms a complex with both HA and LP. We generated a molecular model of the B-B' segment, in which a deletion and an insertion of B' and B are critical for stable structure and HA binding. These results provide important insights into the mechanisms of formation of the proteoglycan aggregate and HA binding of molecules containing the link module.  相似文献   

19.
20.
Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号