首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Total follicular populations in ewes of high and low ovulation rates.   总被引:1,自引:0,他引:1  
The total ovarian follicular populations were studied in two breeds of ewes which differed greatly in their ovulation rates. Thus 8 Romanov (mean ovulation rate 3.1) and 12 Ile-de-France ewes (mean ovulation rate 1.4) were ovariectomized at oestrus during the breeding season. Each right ovary and 3 left ovaries were sectioned at 7 micron and examined microscopically. The number of small follicles, i.e. with 2 or less layers of granulosa cells, was estimated by a tested sampling procedure whilst all larger follicles were measured and arranged into classes. There were half as many small follicles but 1.5--2 times more large follicles in the ovaries of the Romanov ewes compared to those of the Ile-de-France ewes. The number of atretic follicles was approximately the same in both breeds and does not explain the difference observed in ovulation rate. It is concluded that the higher ovulation rate in the Romanov ewe is due to the greater number of large follicles available to be stimulated for ovulation.  相似文献   

2.
Expression of gonadotropin receptors and granulosa cell sensitivity to gonadotropin hormones by small (1-3 mm) and large (3.5-7 mm) follicles were compared in Romanov (ROM, ovulation rate = 3) and Ile-de-France (IF, ovulation rate = 1) ewes in the early and late follicular phase. In healthy follicles, LH receptor levels in granulosa cells increased with increasing follicular size (p < 0. 001) while FSH receptor levels decreased (p < 0.05). In granulosa cells of large follicles, LH receptor (LHR) mRNA levels were greater in the late than in the early follicular phase (p < 0.001, p < 0.05, for ROM and IF, respectively). In the early follicular phase, LHR levels in granulosa (p < 0.001) and theca cells (p < 0.05) of small follicles were greater in ROM than in IF ewes. FSH receptor mRNA levels in granulosa cells of small and large ROM follicles were greater than in the corresponding IF follicles (p < 0.05). Finally, a greater responsiveness (increase in cAMP secretion) to both FSH and hCG was observed by granulosa cells collected during the early follicular phase from ROM vs. IF ewes. Data provide evidence that the greater ovulation rate in the ROM as compared to the IF breed is associated with a greater gonadotropin responsiveness during the early follicular phase.  相似文献   

3.
Prolific breeds of sheep (Romanov, Finn and Booroola Romanov crosses heterozygous for the Booroola gene (F+) were compared with breeds of lower prolificacy (Ile-de-France, Finn X Scottish Blackface, Merino X Blackface and Booroola X Romanov not carrying a copy of Booroola gene (++] by in-vivo monitoring of follicular kinetics by ink labelling during the late luteal phase and follicular phase of the oestrous cycle followed by histological examination of the ovaries or follicle dissection. At each of 3 successive laparotomies, the 3 largest follicles of each ovary were measured and ink labelled. At the final laparotomy, around the beginning of oestrus, all ewes were ovariectomized. High ovulation rate was not associated with the total number of antral follicles in any of the breeds. However, there were more follicles greater than 2 mm in diameter in Romanov and Booroola X Romanov crosses (F+) compared to their respective controls. Such a feature was not observed in Finnish Landrace compared to Finn X Blackface and Merino X Blackface ewes. A more numerous population of recruitable follicles, together with a similar incidence of selection through atresia, were the features associated with the high ovulation rate of Romanov compared to Ile-de-France ewes. The high ovulatory potential of the Finn ewes resulted from a markedly reduced incidence of selection through atresia. Booroola X Romanov ewes carrying a copy of the Booroola gene (F+) appeared to possess features of both parental breeds, including high numbers of recruitable follicles, smaller follicular size when recruitment occurs and an extended time for recruitment. Booroola X Romanov (++) ewes, not carrying the gene, appeared to have lost part of the 'Romanov characteristics' of a more numerous population of recruitable follicles. The variability in the kinetics of preovulatory enlargement, seen in these breeds of sheep, demonstrates that there are a number of pathways through which high ovulation rate can be achieved and hence through which ovulation rate might be manipulated.  相似文献   

4.
Despite differences in FSH concentrations ranging from 1.5 ng/ml (Romanov ewes) to 4 ng/ml (Ile-de-France ewes) between the follicular and luteal phases, follicular growth (numbers of follicles growing, growth rates, maximum size reached) was morphologically similar between the two stages of the cycle. Injection of 750 i.u. hCG at Day 6 or 16 of the cycle triggered ovulation of 4.1 +/- 0.7 and 4.0 +/- 1.3 follicles in Romanov and 2.2 +/- 0.5 and 1.7 +/- 0.5 follicles in Ile-de-France ewes, respectively, demonstrating that functional differentiation was similar between the two stages of the cycle. As gonadotrophin environment differs between these two stages of the cycle, this suggests that there is a wide flexibility in the amount of gonadotrophins required to trigger terminal follicular growth and that ovarian requirements for gonadotrophins might work through thresholds. When Romanov and Ile-de-France ewes were given similar amounts of exogenous gonadotrophins (1250 i.u. PMSG, 750 i.u. hCG) after hypophysectomy, ovulation rates were close to the usual values (Romanov, 5.5 +/- 3.9; Ile-de-France, 1.4 +/- 0.5), demonstrating that differences in gonadotrophin concentrations during the follicular phase do not play a major role in the high ovulation of the Romanov compared to the Ile-de-France ewes.  相似文献   

5.
Ovarian follicles during infancy in Romanov and Ile-de-France ewe lambs   总被引:1,自引:0,他引:1  
The ovaries of new born lambs (15 Ile-de-France and 19 Romanov, 34 ovaries) and of 4-week-old lambs (6 Ile-de-France and 12 Romanov, 18 ovaries) were examined histologically to compare ovarian follicular development in infant lambs of breeds differing in their prolificacy. Breed was the major factor affecting follicular population at birth. Ile-de-France lambs had a higher total number of growing follicles (P less than 0.001), and more preantral (P less than 0.001) and antral (P less than 0.005) follicles than did Romanov lambs. Furthermore, the size of the largest follicles was also reduced in Romanov compared to Ile-de-France lambs. At 4 weeks of age, most of the features of the ovarian follicular population except the mean size of the third largest follicle were similar between the two breeds. However, atresia of antral follicles had appeared only in Ile-de-France and not in Romanov lambs. When a challenge with exogenous gonadotrophins (1000 i.u. PMSG followed by 1500 i.u. hCG) was attempted, ovulation was triggered in 2/6 and 0/12 Ile-de-France and Romanov lambs respectively. Massive follicular development was noted in 3/6 Ile-de-France lambs but in none of 12 Romanov lambs. Retardation of follicular development together with retardation in the establishment of ovarian sensitivity to gonadotrophins are therefore features typical of the ovaries of Romanov lambs compared to Ile-de-France lambs during the post-natal period.  相似文献   

6.
In Romanov ewes at Day 13 or 14 of the cycle, granulosa cells originating from individual follicles were studied in short-term incubations for aromatase activity and thymidine incorporation. The study was performed on 76 follicles of different sizes (2-7 mm diameter) and degree of atresia, as assessed by histological examination of smears of granulosa cells. As atresia progressed, the labelling index and aromatase activity of granulosa cells decreased. In normal follicles, when follicular diameter increased, the labelling index decreased, while aromatase activity of granulosa cells and oestradiol-17 beta concentration in follicular fluid increased. There was a negative relationship between oestradiol concentration in follicular fluid and the labelling index of granulosa cells in vitro (rs = -0.75; P less than 0.01), suggesting an inverse relationship between growth and differentiation of granulosa cells in normal sheep follicles. In normal small and medium-sized follicles (2-6 mm), incubation with FSH (100 ng/ml) for 2 h increased significantly the labelling index of granulosa cells. In normal medium-sized follicles (4-6 mm), incubation with FSH (50 ng/ml) for 1 h decreased the aromatase activity of granulosa cells. From these results, it is suggested that FSH acts mainly on cells in the G1 phase of the cell cycle, which are steroidogenically active, and makes them move into the S phase where their steroidogenic activity is temporarily inhibited.  相似文献   

7.
In sheep, the presence of the Booroola F gene has several important consequences for ovarian function. This study investigated the consequences of the presence of the F gene for the insulin-like growth factor (IGF) system in the ewe ovary. Studies were undertaken in ovaries from F+ and ++ Mérinos d'Arles ewes to determine 1) the levels of type I IGF receptors and IGF binding proteins (IGFBPs) in follicular cells by quantitative autoradiography of [(125)]-IGF-I binding sites on ovarian sections; 2) the pattern of intrafollicular IGFBPs, by Western-ligand blotting on follicular fluids; and 3) the effects of IGF-I and FSH on proliferation and differentiation of granulosa cells in vitro, assessed by progesterone secretion and cytochrome P450 side-chain cleavage (P450(scc)) expression. The amounts of type I IGF receptors were similar in F+ and ++ follicular cells; however, at the same follicular size, F+ healthy follicles contained lower concentrations of IGFBPs smaller than 40 kDa (particularly IGFBP-2) than ++ healthy follicles. In vitro, in basal conditions as well as in IGF-I- or FSH-stimulated conditions (or both), granulosa cells from F+ follicles had a lower proliferative activity, secreted higher amounts of progesterone, and expressed higher levels of P450(scc) than granulosa cells from ++ follicles of the same size. When F+ and ++ preovulatory follicles were compared at the end of the follicular phase, IGFBPs <40 kDa concentrations were slightly higher, and responsiveness of granulosa cells to FSH in vitro was lower in F+ than in ++ follicles, suggesting that terminal maturation of F+ follicles, although precocious, was less complete than it was in ++ follicles. The early decrease in intrafollicular IGFBPs <40 kDa concentrations observed in F+ antral follicles, which likely leads to an early increase in IGF bioavailability, may at least partly account for the increased ovulation rate that characterizes F-carrier ewes.  相似文献   

8.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

9.
Plasma FSH concentration was significantly higher in Romanov than Ile-de-France ewe lambs at 5, 6 and 7 weeks of age (P less than 0.001, P less than 0.02 and P less than 0.02, respectively) and at 5, 6 and 7 weeks of age (P less than 0.001, P less than 0.01 and P less than 0.05, respectively) compared to Finn lambs. FSH concentrations were similar and unaffected by time in Ile-de-France and Finn lambs. Ovariectomy at 5 weeks of age produced similar increases in FSH concentrations in Romanov and Ile-de-France ewe lambs, but at 3 months of age the increase in FSH concentrations after ovariectomy was significantly steeper (P less than 0.02) in Romanov than Ile-de-France lambs. Sensitivity to oestradiol feedback was related to the age of the lambs. At 5 weeks of age, oestradiol (30 micrograms in oil per lamb) produced a significant decrease (P less than 0.001) in FSH concentrations in Romanov and Ile-de-France lambs, demonstrating that negative feedback can be triggered by oestradiol at this age. Positive feedback after an oestradiol challenge was identified in lambs of both breeds at 6 weeks of age. Sensitivity to the negative feedback of follicular fluid compounds was also established at 5-6 weeks and did not differ between breeds. At 9-10 weeks of age, while there was no breed effect of an oestradiol challenge on FSH concentrations, suppression of FSH concentrations by follicular fluid was shorter in Finn than in the other lambs. As all the feedback mechanisms are functional at 5-6 weeks of age, it is likely that the between breed differences of FSH profile during infancy are linked to differences in gonadal development.  相似文献   

10.
Reproductive cycles in sheep   总被引:1,自引:0,他引:1  
During the last three decades, there has been remarkable progress in many aspects of ovarian biology due to advances in real-time ultrasonography, which permits non-invasive, repeated monitoring of ovarian structures in conscious and non-anaesthetised animals. This review is primarily concerned with ovarian activity, as determined by transrectal ultrasonography, and measurements of circulating concentrations of gonadotrophins and ovarian steroids during reproductive cycles in sheep. The growth of antral follicles reaching ostensibly ovulatory sizes occurs in a wave-like pattern throughout the breeding season in both prolific and non-prolific breeds of sheep. There are typically 3 or 4 waves of follicle development during the interovulatory interval. Follicular wave emergence is primarily controlled by changes in circulating concentrations of follicle-stimulating hormone (FSH) but diminished ovarian responsiveness to gonadotrophic signals may result in reduced numbers of follicular waves. In cyclic ewes, the largest ovarian follicles acquire the ability to secrete oestradiol from the day of emergence with peak oestradiol secretion occurring about the time they reach maximum diameter. The high ovulation rate in some prolific breeds may be achieved by the ovulation of follicles from the last two waves of the interovulatory interval. Prolific ewes tend to produce more but smaller corpora lutea (CL) and have lower serum concentrations of progesterone during the luteal phase of the oestrous cycle as compared to less prolific genotypes. Lastly, recent studies of the endocrine influences on ovarian function have brought into question the existence of strong follicular dominance, as seen in cattle, and provided new insights into the effects of luteal progesterone on antral follicular development in ewes.  相似文献   

11.
The mechanisms of ovulatory compensation following unilateral ovariectomy (ULO) are still not understood. In the present study, we investigated the short- and long-term effects of ULO in sheep using transrectal ovarian ultrasonography and hormone estimations made during the estrous cycle in which surgery was done, the estrous cycle 2 mo after surgery, and the 17-day period during the subsequent anestrus. The ULOs were done when a follicle in the first follicular wave of the cycle reached a diameter > or =5 mm, leaving at least one corpus luteum and one ovulatory-sized follicle in the remaining ovary. Ovulation rate per ewe was 50% higher in the ULO ewes compared with the control ewes at the end of the cycle during which surgery was performed, but it did not differ between groups at the end of the cycle, 2 mo later. This compensation of ovulation rate in ULO ewes was due to ovulation of follicles from the penultimate follicular wave in addition to those from the final wave of the cycle. Ovulation from multiple follicular waves appeared to be due to a prolongation of the static phase of the largest follicle of the penultimate wave of the cycle. Interestingly, the length of the static phase of waves was prolonged in ULO ewes compared with control ewes in every instance where the length of the static phase could be determined. Changes in follicular dynamics due to ULO were not associated with alterations in FSH and LH secretion. In conclusion, ovulatory compensation in ULO sheep involves ovulation from multiple follicular waves due to the lengthened static phase of ovulatory-sized follicles. These altered antral follicular dynamics do not appear to be FSH or LH dependent. Further studies are required to examine the potential role of the nervous system in the enhancement of the life span of the ovulatory-sized follicles leading to ovulatory compensation by the unpaired ovary in ULO sheep.  相似文献   

12.
Morphological and functional features of large ovarian follicles from three breeds of sheep, with different ovulation rates (Finnish Landrace N = 12, Finnish Landrace X Scottish Blackface N = 16, Merino X Scottish Blackface N = 16) were compared by integrating three techniques; ink labelling, in-vitro oestradiol production and morphological classification. The follicles were removed at two stages of the follicular phase, 1 (PG + 1) or 2 (PG + 2) days after PGF-2 alpha treatment and compared after monitoring their rates of growth with the use of ink labelling. After ovariectomy all follicles greater than or equal to 1 mm in diameter were dissected, and the 8 largest were incubated individually for 2 h to assess their ability to secrete oestradiol and testosterone. After incubation the follicles were processed for histological examination and checked for atresia. An analysis of the follicle population was based on in-vitro oestradiol secretion rates in all three breeds; an oestrogen-active population producing 500-8100 pg oestradiol/ml/h and an oestrogen-inactive population producing 0-499 pg oestradiol/ml/h. A comparison of the 3 approaches demonstrated agreement on 94.3 +/- 1.2% of occasions. Ink-labelling demonstrated that all follicles identified as oestrogen-active were increasing in size. Within oestrogen-active follicles significant correlations were detected between oestradiol production and testosterone production (r = 0.42), oestradiol production and granulosa cell number (r = 0.45) and between oestradiol production and mitotic index (r = -0.38). A regression model fitting breed, stage of atresia, granulosa cell number, in-vitro testosterone production and mitotic index demonstrated that granulosa cell number is a characteristic which contributes significantly to the variation of in-vitro oestradiol production in oestrogen-active and oestrogen-inactive follicles. There was no significant difference between breeds in the mean number of ink-labelled follicles growing from Day PG - 1 to Day PG + 1. There was a significant difference between the breeds in the number of ink-labelled follicles growing between Days PG + 1 and PG + 2 (Days 1 and 2 of the follicular phase), the number being similar to the ovulation rate for the breed. The majority of the oestrogen-active follicles had been recruited by Day PG - 1, although in the Finnish Landrace genotypes more than 30% were recruited on or after Day PG + 1 compared to less than 10% in Merino x Scottish Blackface ewes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
This paper reports the effects of X-irradiation on ovulation rate, cyclicity and progesterone and FSH levels in Ile-de-France ewes (4 control and 16 irradiated) after they were treated during the breeding season. The doses used (800 and 2 400 R) destroyed 50% of all size classes of the follicular population. Ovulation occurred in 87% of the treated ewes (ovulation rate = 1) when they were irradiated 24 h after luteolysis; 78% of the corpora lutea resulting from these ovulations were normal as to length and progesterone production. FSH in treated ewes started to increase 20 h after treatment and remained higher than in the controls until ovulation time. Later, while these levels were similar between groups on the day of ovulation, high ovulatory levels persisted in irradiated ewes. In the next cycles, the length of the follicular phases, ovulation rate and progesterone and FSH levels were similar between groups.  相似文献   

14.
The objective of this study was to characterize follicular development, onset of oestrus and preovulatory LH surge, and in vivo embryo yields of sheep superovulated after treatment with a single dose of 1.5mg of GnRH antagonist (GnRHa). At first FSH dose, ewes treated with GnRH antagonist (n=12) showed a higher number of gonadotrophin-responsive follicles, 2-3mm, than control ewes (n=9, 13.5+/-3.8 versus 5.3+/-0.3, P<0.05). Administration of FSH increased the number of >or=4mm follicles at sponge removal in both groups (19.3+/-3.8, P<0.0005 for treated ewes and 12.7+/-5.4, P<0.01 for controls). Thereafter, a 25% of the GnRHa-treated sheep did not show oestrous behaviour whilst none control sheep failed (P=0.06). The preovulatory LH surge was detected in an 88.9% of control ewes and 66.7% of GnRHa-treated sheep. A 77.8% of control females showed ovulation with a mean of 9.6+/-0.9 CL and 3.3+/-0.7 viable embryos, while ewes treated with GnRHa and showing an LH surge exhibited a bimodal distribution of response; 50% showed no ovulatory response and 50% superovulated with a mean of 12.2+/-1.1 CL and 7.3+/-1.1 viable embryos. In conclusion, a single dose of GnRHa enhances the number of gonadotrophin-dependent follicles able to grow to preovulatory sizes in response to an FSH supply. However, LH secretion may be altered in some females, which can affect the preovulatory LH surge and/or can weak the terminal maturation of ovulatory follicles.  相似文献   

15.
A marked difference in both the function and composition of individual ovarian follicles was noted in Booroola X Romney ewes (6-7 years of age) which had previously been segregated on at least one ovulation rate record of 3-4 (F + ewes, N = 21) or less than 3 (++ ewes, N = 21). Follicles in F + ewes produced oestradiol and reached maturity at a smaller diameter than in ++ ewes. In F+ ewes (N = 3), the presumptive preovulatory follicles were 4.4 +/- 0.5 (s.e.m.) mm in diameter and contained 2.1 +/- 0.3 X 10(6) (s.e.m.) granulosa cells, whereas in ++ ewes (N = 3), such follicles were 7.3 +/- 0.3 mm in diameter and contained 6.5 +/- 0.8 X 10(6) cells. During a prostaglandin (PG)-induced follicular phase, the secretion rate of oestradiol from ovaries containing 3 presumptive preovulatory follicles in F + ewes was similar to that from ovaries with only one such follicle in ++ ewes. We suggest that the putative 'gene effect' in F + ewes is manifested during early follicular development and that it may be mediated via an enhanced sensitivity of granulosa cells to pituitary hormones. As a consequence, the development of 3 preovulatory follicles in F + ewes may be necessary to provide a cell mass capable of producing the same quantity of oestradiol as that from one preovulatory follicle in ++ ewes.  相似文献   

16.
Daily transrectal ultrasound scanning and twice-daily blood sampling were used to monitor the temporal relationships between FSH concentrations and follicle development during complete interovulatory intervals for ewes in which the ovulation rate in each of the 2 previous years was high or low (> or = 3 and < or = 2 ovulations, respectively). Follicles that reached > or = 5 mm were used to define a follicular wave and were tracked retrospectively to 3 mm (emergence). The hypothesis that FSH surges (identified with a computer program) and follicular waves (retrospectively determined based on ultrasound scanning) are temporally associated was supported in both groups by the emergence of an anovulatory or ovulatory follicular wave near the peak of an FSH surge. Further support for the hypothesis was a significant increase in FSH concentrations before and a significant decrease after follicular-wave emergence in both groups independent of the identification of FSH surges. Ewes with a history of high ovulation rates had smaller follicles (anovulatory and ovulatory) and more ovulations, but the 2 groups were similar in the number of ovulatory follicular waves and associated FSH surges, number and characteristics of the FSH surges, and mean FSH concentrations per interovulatory interval. Surges of FSH were periodic (every 3 or 4 d) regardless of the ovulation-rate group or follicle response. In ewes with a low ovulation rate, the nonovulatory FSH surges were most frequently associated with emergence of detected anovulatory follicular waves. In ewes with a high ovulation rate, more FSH surges were not associated with a detected follicular wave, as defined, presumably because the largest follicle did not reach 5 mm. The results indicated that the factors resulting in a high ovulation rate were not exerted through circulatory patterns or concentrations of FSH but involved a shorter growth phase and smaller maximal diameter of follicles.  相似文献   

17.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

18.
The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9-10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., approximately 7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1-2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.  相似文献   

19.
High prolificacy due to a gene that has a large effect on ovulation rate has been noted in Booroola and Inverdale ewes. High prolificacy in the Belclare breed (a composite developed from stocks selected for very large litter size or high ovulation rate) may be related to the segregation of two genes. The aims of this study were (i) to compare the morphological and functional features of ovulatory follicles from carriers (which could only be heterozygous for the genes of interest) and non-carriers, and (ii) to identify markers of the Belclare genes among secreted or cellular ovarian proteins. Belclare carrier ewes had more ovulatory follicles (4.9 +/- 0.4) than did non-carrier ewes (2.0 +/- 0.2) (P < 0.001). Ovulatory follicles from carriers were also smaller (4.4 +/- 0.1 mm versus 5.7 +/- 0.2 mm, P < 0.001) and contained a significantly reduced number of granulosa cells (P < 0.001). However, the proportion of proliferating granulosa cells in ovulatory follicles was similar in both groups. The in vitro secretion of steroids per follicle was only marginally lower in follicles from Belclare carriers compared with non-carriers. Furthermore, similar concentrations of steroidogenic enzymes were present in both groups, indicating that steroidogenic potential per granulosa cell is similar between carriers and non-carriers. Possible markers of the Belclare genes were identified among cellular proteins of follicular walls by two-dimensional PAGE and image analysis. Two spots at 78 and 49 kDa were always absent in samples from non-carriers. When secreted proteins in follicles from carriers were compared with those from non-carriers, two spots at 53 and 41 kDa were restricted to samples from carriers and three spots at 97, 91 and 45 kDa were unique to samples from non-carriers. Interestingly, the spot at 91 kDa is also affected by the Booroola gene.  相似文献   

20.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号