首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

2.
Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity. One such pathway involves non-canonical Wnt/Planar Cell Polarity (PCP) signalling that has been associated with other cystic kidney diseases, but has not been investigated in ARPKD. Analysis of the AtminGpg6 mouse showed kidney, liver and lung abnormalities, suggesting it as a novel mouse tool for the study of ARPKD. Further, modulation of Atmin affected Pkhd1 mRNA levels, altered non-canonical Wnt/PCP signalling and impacted cellular proliferation and adhesion, although Atmin does not bind directly to the C-terminus of Fibrocystin. Differences in ATMIN and VANGL2 expression were observed between normal human paediatric kidneys and age-matched ARPKD kidneys. Significant increases in ATMIN, WNT5A, VANGL2 and SCRIBBLE were seen in human ARPKD versus normal kidneys; no substantial differences were seen in DAAM2 or NPHP2. A striking increase in E-cadherin was also detected in ARPKD kidneys. This work indicates a novel role for non-canonical Wnt/PCP signalling in ARPKD and suggests ATMIN as a modulator of PKHD1.  相似文献   

3.
Mai W  Chen D  Ding T  Kim I  Park S  Cho SY  Chu JS  Liang D  Wang N  Wu D  Li S  Zhao P  Zent R  Wu G 《Molecular biology of the cell》2005,16(9):4398-4409
Fibrocystin/polyductin (FPC), the gene product of PKHD1, is responsible for autosomal recessive polycystic kidney disease (ARPKD). This disease is characterized by symmetrically large kidneys with ectasia of collecting ducts. In the kidney, FPC predominantly localizes to the apical domain of tubule cells, where it associates with the basal bodies/primary cilia; however, the functional role of this protein is still unknown. In this study, we established stable IMCD (mouse inner medullary collecting duct) cell lines, in which FPC was silenced by short hairpin RNA inhibition (shRNA). We showed that inhibition of FPC disrupted tubulomorphogenesis of IMCD cells grown in three-dimensional cultures. Pkhd1-silenced cells developed abnormalities in cell-cell contact, actin cytoskeleton organization, cell-ECM interactions, cell proliferation, and apoptosis, which may be mediated by dysregulation of extracellular-regulated kinase (ERK) and focal adhesion kinase (FAK) signaling. These alterations in cell function in vitro may explain the characteristics of ARPKD phenotypes in vivo.  相似文献   

4.
5.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). It is widely accepted that cystogenesis is owing to aberrant cell proliferation and apoptosis, increased fluid secretion, and extracellular matrix abnormality. Fibrocystin/polyductin (FPC), the encoded protein product by PKHD1, is a single transmembrane protein and believed to be a novel receptor-like molecule. FPC has been located mainly on the plasma membrane and cilium/basal body. However, its biological functions remain poorly understood. To investigate the roles of FPC in the pathogenesis of ARPKD, we searched for FPC-interacting proteins by yeast two-hybrid assay, and found a novel partner, prosaposin. Prosaposin is a glycoprotein with multiple functions. With GST pull-down assay and co-immunoprecipitation, we confirmed the interaction between FPC and prosaposin. In order to study the effects of FPC-prosaposin interaction on cell proliferation and apoptosis, we have made stable cell lines in which FPC was overexpressed or knocked down alone or in combination with prosaposin overexpression. By MTT assay, we found that FPC knockdown and prosaposin overexpression increased cell proliferation, respectively, while overexpression of FPC C-tail did the opposite. With apoptosis assay, we found that overexpression of FPC C-tail promoted cell apoptosis. However, overexpression of prosaposin significantly enhanced cell survival in FPC knockdown cells. All these findings indicated that FPC and prosaposin may play significant roles in regulation of cell proliferation and apoptosis. Taken together, we have disclosed a novel signaling pathway of FPC, which may be important for the pathogenesis of ARPKD.  相似文献   

6.
7.
8.
Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2−/− MEFs compared with RSK2+/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2+/+ MEFs. In contrast, GSK3β−/− MEFs induced the cell proliferation compared with GSK3β+/+ MEFs. Importantly, RSK2−/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2+/+ MEFs. The sub-G1 induction in RSK2−/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2+/+ MEFs. Notably, return back of RSK2 into RSK2−/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2−/−/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.  相似文献   

9.
10.
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm–mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal–mesenchymal interaction and a novel genetic factor for cleft palate.  相似文献   

11.
Keratan sulfate (KS) proteoglycan side chains are abundant in the human cartilage matrix, but these chains have been said to be absent in murine skeletal tissues. We previously showed that KS suppresses cartilage damage and ameliorates inflammation in mice arthritis model. Because mice deficient of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) (KS biosynthesis enzyme) are now available, we decided to do further examinations.We examined, in culture, the difference between GlcNAc6ST-1−/− and wild-type (WT) mice for interleukin (IL)-1α-induced glycosaminoglycan (GAG) release from the articular cartilage. Arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail and subsequent intraperitoneal injection of lipopolysaccharide. We examined the differences in arthritis severities in the two genotypes. After intraperitoneal KS administration in phosphate-buffered saline (PBS) or PBS alone, we evaluated the potential of KS in ameliorating arthritis and protecting against cartilage damage in deficient mice.GAG release induced by IL-1α in the explants, and severity of arthritis were greater in GlcNAc6ST-1−/− mice than their WT littermates. Intraperitoneal KS administration effectively suppressed arthritis induction in GlcNAc6ST-1−/− mice. Thus, GlcNAc6ST-1−/− mice cartilage is more fragile than WT mice cartilage, and exogenous KS can suppress arthritis induction in GlcNAc6ST-1−/− mice. Vestigial KS chain or altered glycosylation in articular cartilage in GlcNAc6ST-1−/− mice may be protective against arthritis and associated cartilage damage as well as cartilage damage in culture. KS may offer therapeutic opportunities for chondroprotection and suppression of joint damage in inflammatory arthritis and may become a therapeutic agent for treating rheumatoid arthritis.  相似文献   

12.
Most antitumour agents with cytotoxic properties induce apoptosis. The lipophilic compound euplotin C, isolated from the ciliate Euplotes crassus, is toxic to a number of different opportunistic or pathogenic microorganisms, although its mechanism of action is currently unknown. We report here that euplotin C is a powerful cytotoxic and pro-apoptotic agent in mouse AtT-20 and rat PC12 tumour-derived cell lines. In addition, we provide evidence that euplotin C treatment results in rapid activation of ryanodine receptors, depletion of Ca2+ stores in the endoplasmic reticulum (ER), the release of cytochrome c from the mitochondria, activation of caspase-12, and activation of caspase-3, leading to apoptosis. Intracellular Ca2+ overload is an early event which induces apoptosis and is parallelled by ER stress and the release of cytochrome c, whereas caspase-12 may be activated by euplotin C at a later stage in the apoptosis pathway. These events, either independently or concomitantly, lead to the activation of the caspase-3 and its downstream effectors, triggering the cell to undergo apoptosis. These results demonstrate that euplotin C may be considered for the design of cytotoxic and pro-apoptotic new drugs.  相似文献   

13.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

14.
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits present as the outermost component of the cell wall in several Lactobacillus species. The underlying mechanism for how S-layer proteins inhibit pathogen infections remains unclear. To gain insights into the mechanism of the antimicrobial activity of Lactobacillus S-layer proteins, we examined how Lactobacillus S-layer proteins impact Salmonella Typhimurium-induced apoptosis in vitro in Caco-2 human colon epithelial cells. When Caco-2 cells infected with Salmonella Typhimurium SL1344, we found that apoptosis was mediated by activation of caspase-3, but not caspase-1. When Salmonella Typhimurium SL1344 and S-layer proteins were coincubated simultaneously, Caco-2 cell apoptosis was markedly decreased and the cell damage was modified, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer proteins inhibited the caspase-3 activity and activated the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway. Taken together, these findings suggest that Lactobacillus S-layer proteins protected against Salmonella-induced apoptosis through reduced caspase-3 activation. In addition, Salmonella-induced apoptotic cell damage was modified by S-layer proteins through the ERK1/2 signaling pathway. This mechanism may represent a novel approach for antagonizing Salmonella infection.  相似文献   

15.
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55−/− mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.  相似文献   

16.
A sulfated polysaccharide purified from a brown alga Ecklonia cava, having high anticoagulant activity was investigated for its antiproliferative effect on murine colon carcinoma (CT-26), human leukemic monocyte lymphoma (U-937), human promyelocytic leukemia (HL-60), and mouse melanoma (B-16) cell lines. The sulfated polysaccharide isolated and purified from an enzymatic extract of E. cava had a good selective tumor cell growth inhibition effect; its effect on HL-60 and U-937 was especially promising. The IC50 value for the sulfated polysaccharide from E. cava (ECSP) on U-937 was 43.9 μg mL−1. The presence of the sample in the cell culture media stimulated the induction of apoptosis, revealed by nuclear staining with Hoechst 33342. The apoptosis induction was confirmed by the cell cycle analysis, while pronounced sub-G1 phase arrests of 9.5% and 13.8% were also clearly observed when the cells were treated at 15 and 30 μg mL−1 of ECSP in the U-937 cell line, respectively. After a 24-h incubation period, ECSP dose-dependently enhanced the DNA fragmentation on the U-937 cell line as observed in the agarose gel electrophoresis assay. To rule out the action mechanism of ECSP for its anticancer activity, some western blot analyses were conducted with several antibodies (caspase-7, caspase-8, Bax, Bcl-xL, and PARP) and ECSP had a clear effect on the caspase -7 and 8 which cleave protein substrates, including PARP, an inducer of apoptosis responsible for DNA cleavage. Moreover, ECSP controlled the cellular transmembrane molecules like Bax and Bcl-xL. Taken together, the above results demonstrate that the apoptosis for antiproliferative effect of ECSP was clearly induced on U-937 cells.  相似文献   

17.
18.
19.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号