首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.  相似文献   

2.
Wang TC  Chiu H  Chang YJ  Hsu TY  Chiu IM  Chen L 《PloS one》2011,6(10):e26433
SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.  相似文献   

3.
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.  相似文献   

4.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

5.
6.
Entry of the bacterial pathogen Listeria monocytogenes into non-phagocytic mammalian cells is mainly mediated by the InlB protein. Here we show that in the human epithelial cell line HEp-2, the invasion protein InlB activates sequentially a p85β-p110 class IA PI 3-kinase and the phospholipase C-γ1 (PLC-γ1) without detectable tyrosine phosphorylation of PLC-γ1. Purified InlB stimulates association of PLC-γ1 with one or more tyrosine-phosphorylated proteins, followed by a transient increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels and a release of intracellular Ca2+ in a PI 3-kinase-dependent manner. Infection of HEp-2 cells with wild-type L. monocytogenes bacteria also induces association of PLC-γ1 with phosphotyrosyl proteins. This interaction is undetectable upon infection with a Δ inlB mutant revealing an InlB specific signal. Interestingly, pharmacological or genetic inactivation of PLC-γ1 does not significantly affect InlB-mediated bacterial uptake, suggesting that InlB-mediated PLC-γ1 activation and calcium mobilization are involved in post-internalization steps.  相似文献   

7.
It has been reported that growth factors activate Ras through a complex of an adaptor type SH2-containing molecule, Grb2, and a Ras guanine nucleotide-releasing protein (GNRP), mSos. We report on the involvement of another adaptor molecule, CRK, in the activation of Ras. Overexpression of wild-type CRK proteins CRK-I and CRK-II enhanced the nerve growth factor (NGF)-induced activation of Ras in PC12 cells, although the basal level of GTP-bound active Ras was not altered. In contrast, mutants with a single amino acid substitution in either the SH2 or SH3 domain of the CRK-I protein inhibited the NGF-induced activation of Ras. Two GNRPs for the Ras family, mSos and C3G, were coimmunoprecipitated with the endogenous Crk proteins in PC12 cells. The association between C3G and the CRK mutants was dependent upon the presence of intact SH3. The SH2 domain of CRK bound to the SHC protein phosphorylated on tyrosine residues by NGF stimulation. The results demonstrate that, in addition to Grb2, CRK participates in signaling from the NGF receptor and that two GNRPs appear to transmit signals from these adaptor molecules to Ras.  相似文献   

8.
Abstract: Nerve growth factor (NGF) increases arachidonic acid (AA) release by PC12 pheochromocytoma cells. To explore the role of protein kinase C (PKC) in this action of NGF, PKC was down-regulated by long-term treatment of the cells with phorbol 12-myristate 13-acetate (PMA). Such prolonged exposure to PMA (1 µ M ) resulted in the inhibition of NGF-induced AA release. Moreover, pretreatment of PC12 cells with the protein kinase inhibitor staurosporine or with calphostin C, a specific inhibitor of PKC, also blocks the increase of AA release induced by NGF. These data, as well as that PMA alone can induce AA release in PC12 cells, suggest that PKC is necessary for NGF-induced AA release. Immunoblot analysis of whole cell lysates by using antibodies against various PKC isoforms revealed that our PC12 cells contained PKCs α, δ, ε, and ζ. PMA down-regulation depleted PKCs α, δ, and ε, and partially depleted ζ. To see which isoform was involved in NGF-induced AA release, an isoform-specific PKC inhibitor was used. GO 6976, a compound that inhibits PKCs α and β specifically, blocked NGF-induced AA release. In addition, thymeleatoxin, a specific activator of PKCs α, β, and γ, induced AA release from PC12 cells in amounts comparable with those seen with NGF. Taken together, these data suggest that PKC α plays a role in NGF-induced AA release.  相似文献   

9.
Abstract: Phospholipase Cγ1 (PLC-γ1) is involved at an early step in signal transduction of many hormones and growth factors and catalyzes the hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate to diacylglycerol and inositol trisphosphate, two potent intracellular second messenger molecules. The transformation of PC12 cells into neuron-like cells induced by nerve growth factor is preceded by a rapid stimulation of PLC-γ1 phosphorylation and PI hydrolysis. The present study analyzed the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) on phosphorylation of PLC-γ1 in primary cultures of embryonic rat brain cells. BDNF and NT-3 stimulated the phosphorylation of PLC-γ1, followed by hydrolysis of PI. The stimulation of PLC-γ1 phosphorylation occurred within 20 s after addition of BDNF or NT-3 and lasted up to 30 min, with a peak after 4 min. ED50 values were similar for BDNF and NT-3, with τ25 ng/ml. Phosphorylation of PLC-γ1 by BDNF and NT-3 was found in cultures from all major brain areas. K-252b, a compound known to inhibit selectively neurotrophin actions by interfering with the phosphorylation of trk -type neurotrophin receptors, prevented the BDNF- and NT-3-stimulated phosphorylation of PLC-γ1. Receptors of the trk type were coprecipitated with anti-PLC-γ1 antibodies. The presence of trkB mRNA in the cultures was substantiated by northern blot analysis. The action of BDNF and NT-3 seems to be neuron specific because no phosphorylation of PLC-γ1 was observed in cultures of nonneuronal brain cells. The results provide evidence that developing neurons of the cerebral cortex and other brain areas are responsive to BDNF and NT-3, and they indicate that the transduction mechanism of BDNF and NT-3 in the brain involves rapid phosphorylation of PLC-γ1 followed by PI hydrolysis.  相似文献   

10.
To elucidate the role of epigenetic reprogramming in cell- or tissue-specific differentiation, we explored the role of DNA methyltransferases (Dnmts) in the nerve growth factor (NGF)-induced differentiation of PC12 (pheochromocytoma) cells into neuronal cells. The mRNA and protein levels of de novo methyltransferase Dnmt3b increased, whereas those of Dnmt3a and Dnmt1 decreased, during NGF-induced neurite outgrowth. Dnmt3b localized in the nucleus, as well as in the growing neurites. When the expression of Dnmt3b was inhibited by antisense or small interfering RNA, PC12 cells continued to proliferate and failed to generate neurites. Cells depleted of Dnmt3b were unable to exit the cell cycle even after 6 days of NGF treatment. Furthermore, this failure in differentiation correlated with significant attenuation in tyrosine phosphorylation of TrkA (a marker for NGF-induced differentiation) and reduced the expression of neuronal markers, Hu antigen, and MAP2. The methyl-CpG content of the PC12 genome or the methylation status of repetitive elements was not significantly altered after differentiation and was not affected by Dnmt3b depletion. This was consistent with the ability of the catalytic-site mutant of Dnmt3b to induce differentiation in Dnmt3b-depleted cells after NGF treatment. The Dnmt3b-mediated differentiation was attributed to its N-terminal domain, which recruits histone deacetylase 2 (Hdac2), as demonstrated by (i) impeding of differentiation by the Hdac inhibitors, (ii) facilitation of the differentiation process by overexpression of the N-terminal domain of Dnmt3b, (iii) higher Hdac activity associated with Dnmt3b after NGF treatment, and (iv) coimmunoprecipitation and cosedimentation of Dnmt3b specifically with Hdac2 in a glycerol density gradient. These data indicate a novel role of Dnmt3b in neuronal differentiation.  相似文献   

11.
12.
SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth.  相似文献   

13.
The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, α3-integrin, and a higher-molecular-weight form of β1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.  相似文献   

14.
Yung LY  Tso PH  Wu EH  Yu JC  Ip NY  Wong YH 《Cellular signalling》2008,20(8):1538-1544
Differentiation of PC12 cells by nerve growth factor (NGF) requires the activation of various mitogen-activated protein kinases (MAPKs) including p38 MAPK. Accumulating evidence has suggested cross-talk regulation of NGF-induced responses by G protein-coupled receptors, thus we examined whether NGF utilizes G(i/o) proteins to regulate p38 MAPK in PC12 cells. Induction of p38 MAPK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). NGF-dependent p38 MAPK phosphorylation became insensitive to PTX treatment upon transient expressions of Galpha(z) or the PTX-resistant mutants of Galpha(i2) and Galpha(oA). Moreover, Galpha(i2) was co-immunoprecipitated with the TrkA receptor from PC12 cell lysates. To discern the participation of various signaling intermediates, PC12 cells were treated with a panel of specific inhibitors prior to the NGF challenge. NGF-induced p38 MAPK phosphorylation was abolished by inhibitors of Src (PP1, PP2, and SU6656) and MEK1/2 (U0126). Inhibition of the p38 MAPK pathway also suppressed NGF-induced PC12 cell differentiation. In contrast, inhibitors of JAK2, phospholipase C, protein kinase C and Ca(2+)/calmodulin-dependent kinase II did not affect the ability of NGF to activate p38 MAPK. Collectively, these studies indicate that NGF-dependent p38 MAPK activity may be mediated via G(i2) protein, Src, and the MEK/ERK cascade.  相似文献   

15.
Nerve growth factor (NGF) stimulation of pheochromocytoma PC12 cells transiently increased the intracellular concentration of reactive oxygen species (ROS). This increase was blocked by the chemical antioxidant N-acetylcysteine and a flavoprotein inhibitor, diphenylene iodonium. NGF responses of PC12 cells, including neurite outgrowth, tyrosine phosphorylation, and AP-1 activation, was inhibited when ROS production was prevented by N-acetylcysteine and diphenylene iodonium. The expression of dominant negative Rac1N17 blocked induction of both ROS generation and morphological differentiation by NGF. The ROS produced appears to be H(2)O(2), because the introduction of catalase into the cells abolished NGF-induced neurite outgrowth, ROS production, and tyrosine phosphorylation. These results suggest that the ROS, perhaps H(2)O(2), acts as an intracellular signal mediator for NGF-induced neuronal differentiation and that NGF-stimulated ROS production is regulated by Rac1 and a flavoprotein-binding protein similar to the phagocytic NADPH oxidase.  相似文献   

16.
17.
18.
19.
Activation of phosphatidylinositol 3-kinase (PI3-K) is considered to be a key event upon stimulation of cells with growth factors. Akt is known to be a downstream target of PI3-K when it is activated by nerve growth factor (NGF). NGF induces cell differentiation of PC12 cells as indicated by neurite outgrowth. In order to investigate the role of PI3-K/Akt in NGF-induced differentiation of PC12 cells, we generated cells ectopically expressing constitutively activated (CA), wild type (WT) and dominant negative (DN) forms of Akt. NGF-induced neurite outgrowth was greatly accelerated in the cells expressing CA-Akt, and dramatically inhibited in those expressing DN-Akt. Pre-treatment with an Akt inhibitor, ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H- hexahydro-1,4-diazepine], inhibited NGF-induced Akt phosphorylation as well as neurite outgrowth but did not markedly affect the activities of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The PI3-K inhibitors wortmannin and LY294002 blocked NGF-induced Akt phosphorylation as well as neurite outgrowth. These results indicate that PI3-K/Akt is a positive regulator of NGF-induced neuronal differentiation in PC12 cells.  相似文献   

20.
Increasing evidence indicates that the nm23 genes, initially documented as suppressors of metastasis progression, are involved in normal development and differentiation. We have shown previously that the murine nm23 gene enhances pheochromocytoma PC12 cells responsiveness to NGF by accelerating cell growth arrest and neurite outgrowth. The present study was aimed at elucidating the mechanisms by which nm23 controls cell proliferation and promotes neuronal differentiation. We demonstrated that nm23 modulates the expression of the Rb2/p130 gene, a negative regulator of cell cycle progression also implicated in the maintenance of the differentiated state. Furthermore, we showed that nm23-H1 mutants, defective in inhibiting the invasive phenotype, downregulate Rb2/p130 expression and inhibit NGF-induced PC12 cell differentiation. In synthesis, our results provide first evidence of interplay between the nm23 and the Rb2/p130 genes in driving PC12 cells neuronal differentiation and suggest that the antimetastatic and the differentiative nm23 functions can have similar features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号