首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(7):1050-1051
Patients who develop chronic myeloid leukemia (CML) are currently treated with tyrosine kinase inhibitors (TKIs), which inhibit the function of the oncogene BCR/Abl. Most CML cells undergo apoptosis when BCR/Abl tyrosine kinase activity is suppressed by TKIs. Cells surviving drug treatment are either stem cells (CML in early phase) or cells with BCR/Abl-dependent or -independent mechanisms of drug resistance (CML in advanced phase). Since survival of these cells is thought to be responsible for disease recurrence, it is critical to find ways to fully eradicate CML stem cells. We have recently shown that when CML cells, including stem cells, are exposed to TKI they activate an autophagic program, which relies on intracellular calcium and is not inhibited by Bcl-2. Pharmacological or RNAi-mediated inhibition of autophagy potentiates the effect of TKI in inducing death of CML cells, including the stem cells. These data strongly suggest that inhibition of autophagy may improve the therapeutic effects of TKIs in the treatment of CML. In addition, they give credence to the idea that in cancer cells autophagy is part of a stereotypic response to stress and specifically to abrogation of their main oncogenic signal(s).  相似文献   

2.
Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.  相似文献   

3.
We previously showed that incubation of chronic myeloid leukemia (CML) cells in very low oxygen selects a cell subset where the oncogenetic BCR/Abl protein is suppressed and which is thereby refractory to tyrosine kinase inhibitors used for CML therapy. In this study, salarin C, an anticancer macrolide extracted from the Fascaplysinopsis sponge, was tested as for its activity on CML cells, especially after their incubation in atmosphere at 0.1% oxygen. Salarin C induced mitotic cycle arrest, apoptosis and DNA damage. Salarin C also concentration-dependently inhibited the maintenance of stem cell potential in cultures in low oxygen of either CML cell lines or primary cells. Surprisingly, the drug also concentration-dependently enforced the maintenance of BCR/Abl signaling in low oxygen, an effect which was paralleled by the rescue of sensitivity of stem cell potential to IM. These results suggest a potential use of salarin C for the suppression of CML cells refractory to tyrosine kinase inhibitors  相似文献   

4.
5.
Levinson NM  Boxer SG 《PloS one》2012,7(4):e29828
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor''s activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.  相似文献   

6.
Chronic myeloid leukaemia (CML) arises in a haemopoietic stem cell and is driven by the Bcr‐Abl oncoprotein. Abl kinase inhibitors (protein tyrosine kinase inhibitors) represent standard treatment for CML and induce remission in the majority of patients with early disease, however these drugs do not target leukaemic stem cells (LSCs) effectively, thus preventing cure. Previously, we identified the farnesyl transferase inhibitor BMS‐214662 as a selective inducer of apoptosis in LSCs of CML patients relative to normal controls; however, the mechanism underlying LSC‐specific apoptosis remains unclear. To identify pathways involved in the favourable effects of BMS‐214662 in CML, we employed a proteomic approach (based on iTRAQ) to analyse changes in protein expression in response to drug treatment in the nuclear and cytoplasmic fractions of CD34+ CML cells. The study identified 88 proteins as altered after drug treatment, which included proteins known to be involved in nucleic acid metabolism, oncogenesis, developmental processes and intracellular protein trafficking. We found that expression of Ebp1, a negative regulator of proliferation, was upregulated in the nucleus of BMS‐214662‐treated cells. Furthermore, proteins showing altered levels in the cytosol, such as histones, were predominantly derived from the nucleus and BMS‐214662 affected expression levels of nuclear pore complex proteins. Validation of key facets of these observations suggests that drug‐induced alterations in protein localisation, potentially via loss of nuclear membrane integrity, contributes to the LSC specificity of BMS‐214662, possibly via Ran proteins as targets.  相似文献   

7.
Imatinib is an ATP-competitive inhibitor of Bcr-Abl kinase and the first drug approved for chronic myelogenous leukemia (CML) treatment. Here we show that imatinib binds to a secondary, allosteric site located in the myristoyl pocket of Abl to function as an activator of the kinase activity. Abl transitions between an assembled, inhibited state and an extended, activated state. The equilibrium is regulated by the conformation of the αΙ helix, which is located nearby the allosteric pocket. Imatinib binding to the allosteric pocket elicits an αΙ helix conformation that is not compatible with the assembled state, thereby promoting the extended state and stimulating the kinase activity. Although in wild-type Abl the catalytic pocket has a much higher affinity for imatinib than the allosteric pocket does, the two binding affinities are comparable in Abl variants carrying imatinib-resistant mutations in the catalytic site. A previously isolated imatinib-resistant mutation in patients appears to be mediating its function by increasing the affinity of imatinib for the allosteric pocket, providing a hitherto unknown mechanism of drug resistance. Our results highlight the benefit of combining imatinib with allosteric inhibitors to maximize their inhibitory effect on Bcr-Abl.  相似文献   

8.
Chronic myeloid leukemia (CML) is caused by chromosomal rearrangement resulting in the expression of Bcr-Abl fusion protein with deregulated Abl tyrosine kinase activity. Approved drugs – imatinib, dasatinib, nilotinib, and ponatinib – target the ATP-binding site of Abl kinase. Even though these drugs are initially effective, long-term usefulness is limited by the development of resistance. To overcome this problem, targeting the allosteric site of Abl kinase, which is remote from the ATP-binding site is found to be a useful strategy. In this study, structure-based and ligand-based virtual screening methods were applied to narrow down possible drugs (from DrugBank database) that could target the allosteric site of Abl kinase. Detailed investigations of the selected drugs in the allosteric site of Abl kinase, using molecular dynamics and steered molecular dynamics simulation shows that gefitinib, an EGFR inhibitor approved for the treatment of lung cancer, could bind effectively to the allosteric site of Bcr-Abl. More interestingly, gefitinib was found to enhance the ability of imatinib to bind at the ATP-binding site of Bcr-Abl kinase. Based on the in silico findings, gefitinib was tested in combination with imatinib in K562 CML cell line using MTT cell proliferation assay and found to have a synergistic antiproliferative activity. Further detailed mechanistic study could help to unravel the full potential of imatinib – gefitinib combination for the treatment of CML.  相似文献   

9.
The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr–Abl, fail to effectively suppress the Bcr–Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr–Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.  相似文献   

10.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl-transformed cells, and Ras activity enhances the oncogenic ability of Bcr-Abl. However, the mechanism by which Bcr-Abl activates the Ras pathway is not completely understood. Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction, resulting in blocking the MAP kinase pathway. In the present study, we found that RKIP was depleted in CML cells. We investigated the interaction between RKIP and Bcr-Abl in CML cell lines and Bcr-Abl+ progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of RKIP and reduced the pERK1/2 status, resulting in inhibited proliferation of CML cells. Moreover, RKIP up-regulated cell cycle regulator FoxM1 expression, resulting in G1 arrest via p27Kip1 and p21Cip1 accumulation. In colony-forming unit granulocyte, erythroid, macrophage, megakaryocyte, colony-forming unit-granulocyte macrophage, and burst-forming unit erythroid, treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced RKIP and reduced FoxM1 expressions, and inhibited colony formation of Bcr-Abl+ progenitor cells, whereas depletion of RKIP weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl+ progenitor cells. Thus, Bcr-Abl represses the expression of RKIP, continuously activates pERK1/2, and suppresses FoxM1 expression, resulting in proliferation of CML cells.  相似文献   

11.
The Werner syndrome protein (WRN) is a caretaker of the human genome, and the Abl kinase is a regulator of the DNA damage response. Aberrant DNA repair has been linked to the development of cancer. Here, we have identified a direct binding between WRN and c-Abl in vitro via the N-terminal and central regions of WRN and the Src homology domain 3 of c-Abl. After bleomycin treatment in culture, WRN and c-Abl are dissociated and followed by an Abl kinase-dependent WRN relocalization to the nucleoplasm. WRN is a substrate of c-Abl in vitro and in vivo. WRN is tyrosine phosphorylated either transiently by treatment of HeLa cells with bleomycin or constitutively in cells from chronic myeloid leukemia (CML) patients, and these phosphorylations are prevented by treatment with the Abl kinase inhibitor STI-571. Tyrosine phosphorylation of WRN results in inhibition of both WRN exonuclease and helicase activities. Furthermore, anti-WRN immunoprecipitates from CML cells treated with STI-571 show increased 3'-->5' exonuclease activity. These findings suggest a novel signaling pathway by which c-Abl mediates WRN nuclear localization and catalytic activities in response to DNA damage.  相似文献   

12.
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.  相似文献   

13.
Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model.  相似文献   

14.
Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca2+-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease.  相似文献   

15.
Six analogs of imatinib, an Abl kinase inhibitor clinically used as a first-line therapeutic agent for chronic myeloid leukaemia (CML), have been synthesized and characterized. And their potency as Abl kinase inhibitors have been screened by a robust virtual screening method developed based on the crystal structure (PDB code 2hyy) of Abl-imatinib complex using Surflex-Docking. The docking results are consistent with the inhibitory potency of the compounds characterized by MS method. And the H-bonds between imatinib analogs and Thr315 and Met318 residues in Abl kinase are shown to be crucial for achieving accurate poses and high binding affinities for the ATP-competitive kinase inhibitors.  相似文献   

16.
Bcr–Abl is the transforming principle underlying chronic myelogenous leukaemia (CML). Here, we use a functional interaction proteomics approach to map pathways by which Bcr–Abl regulates defined cellular processes. The results show that Bcr–Abl regulates the actin cytoskeleton and non-apoptotic membrane blebbing via a GADS/Slp-76/Nck1 adaptor protein pathway. The binding of GADS to Bcr–Abl requires Bcr–Abl tyrosine kinase activity and is sensitive to the Bcr–Abl inhibitor imatinib, while the GADS/Slp-76 and Slp-76/Nck interactions are tyrosine phosphorylation independent. All three adaptor proteins co-localize with cortical actin in membrane blebs. Downregulation of each adaptor protein disrupts the actin cytoskeleton and membrane blebbing in a similar fashion and similar to imatinib. These findings highlight the importance of protein interaction dependent adaptor protein pathways in oncogenic kinase signaling.  相似文献   

17.
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.  相似文献   

18.
Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.  相似文献   

19.
As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1 > DDR-2 > BCR-Abl (Abl) > PDGFRα/β > KIT > CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38β) and MAPK12 (p38α), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.  相似文献   

20.
The constitutively activated Abl tyrosine kinase domain of the chimeric Bcr-Abl oncoprotein is responsible for the transformation of haematopoietic stem cells and the symptoms of chronic myeloid leukaemia (CML). Imatinib targets the tyrosine kinase activity of Bcr-Abl and is a first-line therapy for this malignancy. Although highly effective in chronic phase CML, patients who have progressed to the advanced phase of the disease frequently fail to respond to imatinib or develop resistance to therapy and relapse. This is often due to the emergence of clones expressing mutant forms of Bcr-Abl, which exhibit a decreased sensitivity towards inhibition by imatinib. Considerable progress has recently been made in understanding the structural biology of Abl and the molecular basis for resistance, facilitating the discovery and development of second generation drugs designed to combat mutant forms of Bcr-Abl. The first of these compounds to enter clinical development were BMS-354825 (BristolMyersSquibb) and AMN107 (Novartis Pharma) and, from Phase I results, both of these promise a breakthrough in the treatment of imatinib-resistant CML. Recent advances with these and other promising classes of new CML drugs are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号