首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipophilic triphenylmethylphosphonium cation (TPMP+) has been employed to measure delta psi m, the electrical potential across the inner membrane of the mitochondria of intact hepatocytes. The present studies have examined the validity of this technique in hepatocytes exposed to graded concentrations of inhibitors of mitochondrial energy transduction. Under these conditions, TPMP+ uptake allows a reliable measure of delta psi m in intracellular mitochondria, provided that the ratio [TPMP+]i/[TPMP+]e is greater than 50:1 and that at the end of the incubation more than 80% of the hepatocytes exclude Trypan blue. Hepatocytes, staining with Trypan blue, incubated in the presence of Ca2+, do not concentrate TPMP+. The relationships between delta psi m and two other indicators of cellular energy state, delta GPc and Eh, or between delta psi m and J0, were examined in hepatocytes from fasted rats by titration with graded concentrations of inhibitors of mitochondrial energy transduction. Linear relationships were generally observed between delta psi m and delta GPc, Eh or J0 over the delta psi m range of 120-160 mV, except in the presence of carboxyatractyloside or oligomycin, where delta psi m remained constant. Both the magnitude and the direction of the slope of the observed relationships depended upon the nature of the inhibitor. Hepatocytes from fasted rats synthesized glucose from lactate or fructose, and urea from ammonia, at rates which were generally linear functions of the magnitude of delta psi m, except in the presence of oligomycin or carboxyatractyloside. Linear relationships were also observed between delta psi m and the rate of formation of lactate in cells incubated with fructose and in hepatocytes from fed rats. The linear property of these force-flow relationships is taken as evidence for the operation of thermodynamic regulatory mechanisms within hepatocytes.  相似文献   

2.
Addition of fatty acids to isolated hepatocytes raised respiration rate by 92% and raised mitochondrial membrane potential (delta psi m) in situ from 155 to 162 mV suggesting that the increased fuel supply had a greater effect on respiration rate than any increases in processes that consumed mitochondrial protonmotive force (delta p). The relationship between delta psi m and respiration rate was changed by addition of fatty acids or lactate, showing that there was also stimulation of delta p-consuming reactions. In the presence of oligomycin the relationship between delta psi m and respiration rate was unaffected by substrate addition, showing that the kinetics of delta p consumption by the H+ leak across the mitochondrial inner membrane were unchanged. The stimulation of delta p consumers by fatty acids therefore must be in the pathways of ATP synthesis and turnover. Inhibition of several candidate ATP-consuming reactions had little effect on basal or fatty acid-stimulated respiration, and the nature of the ATP turnover reactions in hepatocytes remains speculative. We conclude that fatty acids (and other substrates) stimulate respiration in hepatocytes in two distinct ways. They provide substrate for the electron transport chain, raising delta p and increasing the non-ohmic proton leak across the mitochondrial inner membrane and the rate of oxygen consumption. They also directly stimulate an unidentified delta p-consuming reaction in the cytoplasm. They do not work by uncoupling or by stimulation of intramitochondrial ATP-turnover reactions.  相似文献   

3.
We have determined the relationship between rate of respiration and protonmotive force in oligomycin-inhibited liver mitochondria isolated from euthyroid, hypothyroid and hyperthyroid rats. Respiration rate was titrated with the respiratory-chain inhibitor malonate. At any given respiration rate mitochondria isolated from hypothyroid rats had a protonmotive force greater than mitochondria isolated from euthyroid controls, and mitochondria isolated from hyperthyroid rats had a protonmotive force less than mitochondria isolated from euthyroid controls. In the absence of malonate mitochondrial respiration rate increased in the order hypothyroid less than euthyroid less than hyperthyroid, while protonmotive force increased in the order hyperthyroid less than euthyroid less than hypothyroid. These findings are consistent with a thyroid-hormone-induced increase in the proton conductance of the inner mitochondrial membrane or a decrease in the H+/O ratio of the respiratory chain at any given protonmotive force. Thus the altered proton conductance or H+/O ratio of mitochondria isolated from rats of different thyroid hormone status controls the respiration rate required to balance the backflow of protons across the inner mitochondrial membrane. We discuss the possible relevance of these findings to the control of state 3 and state 4 respiration by thyroid hormone.  相似文献   

4.
The proton leak across the mitochondrial inner membrane   总被引:10,自引:0,他引:10  
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo.  相似文献   

5.
R P Hafner  M J Leake  M D Brand 《FEBS letters》1989,248(1-2):175-178
We investigated the cation permeability of liver mitochondria isolated from hypothyroid or euthyroid rats by measuring the rate of swelling of respiring mitochondria in acetate salts as a function of membrane potential. Mitochondria from hypothyroid rats have a decreased permeability of roughly 3-fold in the presence of monovalent cations K and tetramethylammonium at any (measured) membrane potential. Since the monovalent cation leak and the proton leak are known to respond similarly to membrane potential our results support the theory that the difference in non-phosphorylating respiration rate between mitochondria from hypothyroid and euthyroid rats is due to a difference in proton leak.  相似文献   

6.
NAD(P)H fluorescence, mitochondrial membrane potential and respiration rate were measured and manipulated in isolated liver cells from fed and starved rats in order to characterize control of mitochondrial respiration and phosphorylation. Increased mitochondrial NADH supply stimulated respiration and this accounted for most of the stimulation of respiration by vasopressin and extracellular ATP. From the response of respiration to NADH it was estimated that the control coefficient over respiration of the processes that supply mitochondrial NADH was about 0.15-0.3 in cells from fed rats. Inhibition of the ATP synthase with oligomycin increased the mitochondrial membrane potential and decreased respiration in cells from fed rats, while the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had the opposite effect. There was a unique relationship between respiration and membrane potential irrespective of the ATP content of the cells indicating that phosphorylation potential controls respiration solely via phosphorylation (rather than by controlling NADH supply). From the response of respiration to the mitochondrial membrane potential (delta psi M) it was estimated that the control coefficients over respiration rate in cells from fed rats were: 0.29 by the processes that generate delta psi M, 0.49 by the process of ATP synthesis, transport and consumption, and 0.22 by the processes that cycle protons across the inner mitochondrial membrane other than via ATP synthesis (e.g. the passive proton leak). Control coefficients over the rate of mitochondrial ATP synthesis were 0.23, 0.84 and -0.07, respectively, by the same processes. The control distribution in cells from starved rats was similar.  相似文献   

7.
Three possible mechanisms by which different levels of thyroid hormones in rats might cause the observed sevenfold change in the apparent proton permeability of the inner membrane of isolated liver mitochondria were investigated. (a) Cytochrome c oxidase was isolated from the livers of hypothyroid, euthyroid and hyperthyroid rats and incorporated into liposomes made with soya phospholipids. There was no difference between the proton current/voltage curves of the three types of vesicles. The hormonal effects, therefore, were not an inherent property of the enzymes, and were not due to different coupling of electron flow through the enzyme to proton transport. (b) The surface area of the mitochondrial inner membrane was shown by three different assays to be greater by a factor of between two and three in mitochondria from hyperthyroid animals than in mitochondria from hypothyroid animals; euthyroid controls were intermediate. This difference in surface area of the inner membrane explains less than half of the difference in apparent proton permeability. (c) The proton permeability of liposomes prepared from phospholipids extracted from mitochondrial inner membranes of hyperthyroid rats was three times greater than the proton permeability of those from hypothyroid rats; euthyroid controls were intermediate. This suggests, first, that the proton permeability of the phospholipid bilayer is an important component of the proton permeability in intact mitochondria and, second, thyroid hormone-induced changes in the bilayer are a major part of the mechanism of increased proton permeability. Such changes may be due to the known differences in fatty acid composition of mitochondrial phospholipids in different thyroid states. Thus we have identified two mechanisms by which thyroid hormone levels in rats change proton flux/mass protein in isolated liver mitochondria: a change in the area of the inner membrane/mass protein and a change in the intrinsic permeability of the phospholipid bilayer.  相似文献   

8.
Digitonin can be used to permeabilize selectively the plasma membrane of Trypanosoma cruzi epimastigotes without significantly affecting the functional integrity of mitochondria. Addition of digitonin at concentrations close to 64 microM caused decrease in the rate of basal respiration of epimastigotes similar to that caused by oligomycin. A further addition of carbonyl cyanide p-trifluorophenylhydrazone (FCCP) brought respiration to the same rate observed prior to the inclusion of digitonin or oligomycin. This suggests that like oligomycin, digitonin is shifting respiration to a nonphosphorylating state probably by depleting the cells from adenine nucleotides due to permeabilization of the plasma membrane. The use of low concentrations of digitonin allowed the quantitative determination of the mitochondrial membrane potential of these cells in situ using safranine O. The response of epimastigotes mitochondrial membrane potential to phosphate, FCCP, valinomycin, nigericin, ADP, and Ca2+ indicates that these mitochondria behave similarly to vertebrate mitochondria regarding the properties of their electrochemical proton gradient. In addition, T. cruzi mitochondria are able to build up and retain a membrane potential of a value comparable to that of mammalian mitochondria. The trypanocidal drug crystal violet, as well as other cationic drugs such as dequalinium, induced a rapid dose-related collapse of the inner mitochondrial membrane potential.  相似文献   

9.
This paper presents and assesses the hypothesis that the proton leak across the mitochondrial inner membrane is an important contributor to standard metabolic rate, and that increases in the amount of mitochondrial inner membrane may be important in causing changes in proton leak and in the standard metabolic rate. The standard metabolic rate of an animal is known to be a function of body mass, phylogeny and thyroid status, and is largely attributed to the metabolically active internal organs. The total area of mitochondrial inner membrane in these organs correlates well with standard metabolic rate over a wide range of body masses in both ectotherms and endotherms. In hepatocytes isolated from rats, proton leak across the mitochondrial inner membrane accounts for about 30% of the resting oxygen consumption, and the distribution of control over respiration suggests that changes in mitochondrial inner membrane surface area will be accompanied by significant changes in the proton leak. This change in the leak will result in significant changes in resting oxygen consumption, but changes in ATP demand may also have a role to play in determining resting respiration rate. Extrapolation of these results to other tissues and other animals suggests that the hypothesis has the potential to explain a substantial proportion of the variation in standard metabolic rate with body mass, phylogeny and thyroid status. However, in most cases the quantitative contribution of proton leak compared to cellular ATP turnover has yet to be experimentally determined.  相似文献   

10.
Rat liver mitochondria respiring under resting state conditions in the presence of oligomycin were rapidly blocked with cyanide and the dissipation of the membrane potential, measured with a tetraphenylphosphonium-sensitive electrode, was followed over time. The plot of the rate of membrane potential dissipation versus the actual value of the membrane potential was nonlinear and identical to the plot of resting state respiration (titrated with small amounts of a respiratory inhibitor) versus the membrane potential. The relationship between the respiratory chain activity and the proton-motive force in mitochondria oxidizing succinate with either oxygen or ferricyanide as electron acceptors was also found to be identical. These results are interpreted as an indication that the passive permeability of the inner mitochondrial membrane toward ions is far more significant in maintaining resting state respiration than is the molecular slippage of the pumps in the respiratory chain. These results also confirm the non-ohmic characteristics of the inner mitochondrial membrane.  相似文献   

11.
A rapid cellular-fractionation technique [ Hoek , Nicholls & Williamson (1980) J. Biol. Chem. 255, 1458-1464] was further characterized by using hepatocytes. Of the mitochondrial marker-enzyme activity, 80% was routinely separated from 71-98% of the total cell activities of marker enzymes for plasma membranes, Golgi-membranes, endoplasmic reticulum, lysosomes and cytosol. The mitochondria were contaminated with 53% of cell nuclei. [3H]Triphenylmethylphosphonium ion (TPMP+) was added to hepatocytes in an attempt to measure cellular transmembrane electrical potentials. After rapid cell fractionation the electrical potential between mitochondria in situ and the incubation medium was found to be 202 mV. This value was slightly increased when hepatocytes were treated with oligomycin, but substantially decreased by oligomycin plus an uncoupler of oxidative phosphorylation. Although estimates of TPMP+ binding were obtained, substantial difficulties prevented the accurate measurement of the electrical potential across the plasma membrane. It is concluded that TPMP+ may be employed to demonstrate the integrity of mitochondria during the fractionation procedures. However, the cation is inadequate for the determination of the separate components of the electrical potential between the mitochondrial matrix and the incubation medium.  相似文献   

12.
Proton leak, as determined by the relationship between respiration rate and membrane potential, was lower in mitochondria from hypothyroid rats compared to euthyroid controls. Moreover, proton leak rates diminished even more when hypothyroid rats were fed a diet containing 5% of the lipid content as n-3 fatty acids. Similarly, proton leak was lower in euthyroid rats fed the 5% n-3 diet compared to one containing only 1% n-3 fatty acids. Lower proton leaks rates were associated with increased inner mitochondrial membrane levels of n-3 fatty acids and a decrease in the ratio of n-6/n-3 fatty acids. This trend was evident in the phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin phospholipid fractions. These results suggest that a significant portion of the effect of thyroid hormone status on proton leak is due to alterations in membrane fatty acid composition, primarily changes in n-3 content. Both the hypothyroid state and dietary effects appear to be mediated in part by inhibition of the Delta6- and Delta5-desaturase pathways.  相似文献   

13.
In order to further investigate the mechanisms regulating the control of mitochondrial respiration by thyroid hormone, the proton motive force was measured during State IV respiration in liver mitochondria isolated from euthyroid, hyperthyroid, hypothyroid and T3-treated hypothyroid rats. The proton motive force was significantly higher in the hyperthyroid group due to an increased pH. The proton motive force of hypothyroid mitochondria was lower than controls due to a decreased membrane potential. The proton motive force for the T3-treated hypothyroid group did not differ from the euthyroid group due to negating changes in the pH gradient and the membrane potential. The intramitochondrial volume was decreased in the hyperthyroid group and unchanged in the other groups. The results indicate that the thyroid status alters the proton motive force in State IV through individual changes in the pH and membrane potential components of the force. The component that changes in hyperthyroid mitochondria is different from that changing in hypothyroid mitochondria.  相似文献   

14.
It has previously been shown that mitochondrial proton conductance decreases with increasing body mass in mammals and is lower in a 250-g lizard than the laboratory rat. To examine whether mitochondrial proton conductance is extremely low in very large reptiles, hepatocytes and mitochondria were prepared from saltwater crocodiles ( Crocodylus porosus) and freshwater crocodiles ( Crocodylus johnstoni). Respiration rates of hepatocytes and liver mitochondria were measured at 37 degrees C and compared with values obtained for rat or previously measured for other species. Respiration rates of hepatocytes from either species of crocodile were similar to those reported for lizards and approximately one fifth of the rates measured using cells from mammals (rat and sheep). Ten-to-thirty percent of crocodile hepatocyte respiration was used to drive mitochondrial proton leak, similar to the proportion in other species. Respiration rates of crocodile liver mitochondria were similar to those of mammalian species. Proton leak rate in isolated liver mitochondria was measured as a function of membrane potential. Contrary to our prediction, the mitochondrial proton conductance of liver mitochondria from crocodiles was greater than that of liver mitochondria from lizards and was similar to that of rats. The acyl composition of liver mitochondrial phospholipids from the crocodiles was more similar to that in mitochondria from rats than in mitochondria from lizards. The relatively high mitochondrial proton conductance was associated with a relatively small liver, which seems to be characteristic of crocodilians. Comparison of data from a number of diverse ectothermic species suggested that hepatocyte respiration rate may decrease with body mass, with an allometric exponent of about -0.2, similar to the exponent in mammalian hepatocytes. However, unlike mammals, liver mitochondrial proton conductance in ectotherms showed no allometric relationship with body size.  相似文献   

15.
The effects of Bax (full-length, FL, and C-terminal truncated, DeltaC) on respiration rate, membrane potential, MgATPase activity and kinetics of regulation of respiration were studied in isolated rat heart mitochondria and permeabilized cardiomyocytes. The results showed that while both Bax-FL and Bax-DeltaC permeabilized the outer mitochondrial membrane, released cytochrome c and reduced the respiration rate, the latter could be fully restored by exogenous cytochrome c only in the case of Bax-DeltaC, but not in presence of Bax-FL. In addition, Bax-FL but not Bax-DeltaC increased the MgATPase activity, and their effects on the mitochondrial membrane potential were quantitatively different. None of these effects was sensitive to cyclosporin A (CsA).It is concluded that Bax-FL affects both the outer and the inner mitochondrial membranes by: (1) opening large pores in the outer membrane; (2) inhibiting some segments of the respiratory chain in the inner membrane; and (3) uncoupling the inner mitochondrial membrane by increasing proton leak without opening the permeability transition pore (PTP).  相似文献   

16.
The effect of the in vivo thyroid status on mitochondrial membrane potential (ΔΨm) in isolated rat hepatocytes was studies by means of a cytofluorimetric technique and the ΔΨm-specific probe JC-1. It is shown that the ΔΨm level decreases in the order hypothyroid>euthyroid>hyperthyroid. Polarographic measurement of the hepatocyte respiratory rates revealed an opposite trend of values: the highest respiratory rate in hepatocytes from hyperthyroid animals, the lowest in those from hypothyroid ones. This means that mitochondrial energy coupling is highest in hypothyroid hepatocytes and lowest in hyperthyroid hepatocytes. 6-Ketocholestanol added to hepatocytes failed to counterbalance the uncoupling effect of thyroid hormones on ΔΨm and respiration rate. Under the same conditions, 6-ketocholestanol appeared to be effective in recoupling of respiration uncoupled by low concentrations of the artificial protonophore FCCP. The mechanism and possible physiological functions of the thyroid hormone-induced decrease in mitochondrial energy coupling are discussed.  相似文献   

17.
The respiratory capacities of hepatocytes, derived from hypothyroid, euthyroid and hyperthyroid rats, have been compared by measuring rates of oxygen uptake and by titrating components of the respiratory chain with specific inhibitors. Thyroid hormone increased the maximal rate of substrate-stimulated respiration and also increased the degree of ionophore-stimulated oxygen uptake. In titration experiments, similar concentrations of oligomycin or antimycin were required for maximal inhibition of respiration regardless of thyroid state, suggesting that the changes in respiratory capacity were not the result of variation in the amounts of ATP synthase or cytochrome b. However, less rotenone was required for maximal inhibition of respiration in the hypothyroid state than in cells from euthyroid or hyperthyroid rats, implying that hepatocytes from hypothyroid animals contain less NADH dehydrogenase. The concentration of carboxyatractyloside necessary for maximal inhibition of respiration was 100 microM in hepatocytes from hypothyroid rats, but 200 microM and 300 microM in hepatocytes from euthyroid and hyperthyroid rats, respectively, indicating a possible correlation between levels of thyroid hormone and the amount or activity of adenine nucleotide translocase. The increased capacity for coupled respiration in response to thyroid hormone is not associated with an increase in the components of the electron transport chain or ATP synthase, but correlates with an increased activity of adenine nucleotide translocase.  相似文献   

18.
The membrane potential (delta psi) and delta pH of the inner mitochondrial membrane were studied in isolated perfused rat hearts using exogenous labelled probes and tissue fractionation in non-aqueous media. The mitochondrial delta psi, measured by means of the subcellular distribution of [3H]triphenylmethylphosphonium (TPMP+), was 125 +/- 7 mV (negative inside) in hearts beating at 5 Hz and 150 +/- 3 mV (negative inside) in hearts beating at 1.5 Hz. The mitochondrial membrane delta pH, measured by means of the subcellular distribution of low concentrations of [1-14C]propionate, was 0.63 +/- 0.06 pH units (alkaline inside) in hearts beating at 5 Hz and 0.53 +/- 0.12 pH units (alkaline inside) in hearts beating at 1.5 Hz. The implication of proton and electron gradients in the regulation of cellular respiration is discussed. In combination with previous evidence on adenylate distribution in the isolated perfused rat heart, the results indicate that the mitochondrial electrogenic adenylate translocator is in near equilibrium with delta psi.  相似文献   

19.
Xu Y  Liu JZ  Xia C 《生理学报》2008,60(1):59-64
本文旨在通过观察棕榈酸对模拟高原低氧大鼠离体脑线粒体解耦联蛋白(uncoupling proteins,UCPs)活性的影响及脑线粒体质子漏与膜电位的改变,探讨UCPs在介导游离脂肪酸对低氧时线粒体氧化磷酸化功能改变中的作用.将SpragueDawley大鼠随机分为对照组、急性低氧组和慢性低氧组.低氧大鼠于低压舱内模拟海拔5 000 m高原23 h/d作低氧暴露,分别连续低氧3 d和30 d.用差速密度梯度离心法提取脑线粒体,[3H-GTP法测定UCPs含量与活性,TPMP 电极与Clark氧电极结合法测量线粒体质子漏,罗丹明123荧光法测定线粒体膜电位.结果显示,低氧使脑线粒体内UCPs含量与活性升高、质子漏增加、线粒体膜电位降低;同时,低氧暴露降低脑线粒体对棕榈酸的反应性,UCPs活性的改变率低于对照组,且线粒体UCPs含量、质子漏、膜电位变化率亦出现相同趋势.线粒体质子漏与反映UCPs活性的Kd值呈线性负相关(P<0.01 r=-0.906),与反映UCPs含量的Bmax呈线性正相关(P<0.01,r=0.856),与膜电位呈线性负相关(P<0.01,r=-0.880).以上结果提示,低氧导致的脑线粒体质子漏增加及膜电位降低与线粒体内UCPs活性升高有关,同时低氧暴露能降低脑线粒体对棕榈酸的反应性,提示在高原低氧环境下,游离脂肪酸升高在维持线粒体能量代谢中起着自身保护和调节机制.  相似文献   

20.
Regulation of mitochondrial protein synthesis by thyroid hormone has been studied in isolated rat hepatocytes and liver mitochondria. Small doses (5 micrograms/100 g body wt) of triiodothyronine (T3) injected into hypothyroid rats increased both state 3 and 4 respiration by approximately 100%, while the ADP:O ratio remained constant. This suggests that T3 increases the numbers of functional respiratory chain units. T3 also induces mitochondrial protein synthesis by 50-100%. Analysis of the mitochondrial translation products show that all of the products were induced. No differential translation of the peptides involved in the respiratory chain was found. Regulation of the cytoplasmically made inner membrane peptides was also investigated in isolated hepatocytes. The majority of these peptides were not influenced by T3, in contrast to the finding with mitochondrial translation products. Those found to be regulated by T3 belong to two subsets, which were either induced or repressed by hormone. Thus, T3 stimulated a general increase in the synthesis of mitochondrially translated inner membrane peptides, but regulates selectively those inner membrane peptides translated on cytoplasmic ribosomes. The findings suggest that hormone regulation of the respiratory chain is exerted through a few selective proteins, perhaps those which require subunits made from both nuclear and mitochondrial genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号