首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
We examined 662 gilthead sea bream Sparus aurata from wild samples of the species in the Aegean and Ionian Seas, using 20 EST-linked microsatellite markers, in three multiplex panels, as well as seven anonymous loci. Most of the markers were revealed to be highly polymorphic. We found low genetic differentiation between the sampling stations/areas with total FST 0.002 (P < 0.05). Based on comparison of five temporal samples, our results indicate genetic data consistency over time for all tested samples, pointing to stable populations, despite reported repeated escape events. Our results confirm the genetic population structure previously observed in these specific areas, using by far more markers than in previous studies in both coding and non-coding DNA loci. The limited genetic structure and the temporal genetic stability indicate neither major genetic differentiation of local populations by geographic isolation nor influence from anthropogenic factors. These results provide a baseline for future reference in any management programme of both wild and farmed population of S. aurata as well as of other aquaculture species with a potential introgression among farmed and wild populations.  相似文献   

2.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

3.
The role of balancing selection in maintaining diversity during the evolution of sexual populations to novel environments is poorly understood. To address this issue, we studied the impact of two mating systems, androdioecy and dioecy, on genotype distributions during the experimental evolution of Caenorhabditis elegans. We analyzed the temporal trajectories of 334 single nucleotide polymorphisms, covering 1/3 of the genome, and found extensive allele frequency changes and little loss of heterozygosities after 100 generations. As modeled with numerical simulations, SNP differentiation was consistent with genetic drift and average fitness effects of 2%, assuming that selection acted independently at each locus. Remarkably, inbreeding by self‐fertilization was of little consequence to SNP differentiation. Modeling selection on deleterious recessive alleles suggests that the initial evolutionary dynamics can be explained by associative overdominance, but not the later stages because much lower heterozygosities would be maintained during experimental evolution. By contrast, models with selection on true overdominant loci can explain the heterozygote excess observed at all periods, particularly when negative epistasis or independent fitness effects were considered. Overall, these findings indicate that selection at single loci, including purging of recessive alleles, underlies most of the genetic differentiation accomplished during the experiment. Nonetheless, they also imply that maintenance of genetic diversity may in large part be due to balancing selection at multiple loci.  相似文献   

4.
Seasonal declines of fitness‐related traits are often attributed to environmental effects or individual‐level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation‐by‐time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian‐linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation‐by‐time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time‐dependent, adaptive adjustment of reproductive effort.  相似文献   

5.
Neopomacentrus filamentosus, a common damselfish on the Indo–Australian archipelago, undergoes significant shifts in size and mitochondrial genetic structure upon larval settlement and metamorphosis to juvenile stages. We characterized five polymorphic microsatellite loci in order to study temporal genetic shifts within a single generation of N. filamentosus sampled first as larval settlers then again as demersal juvenile recruits. All loci were extremely polymorphic and exhibited high levels of heterozygosity. While all loci from the larval samples conformed to Hardy – Weinberg expectations, significant heterozygote deficiencies were seen in two loci in the juvenile samples, likely due to extreme size‐selective mortality imposed post‐settlement.  相似文献   

6.
We report the isolation and development of 81 novel primers for amplifying microsatellite loci in the Rhagoletis pomonella sibling species complex, and the sequencing, characterization and analysis of basic population genetic parameters for nine of these genes. We also report the successful cross‐species amplification of several of these loci. The R. pomonella sibling species complex is a textbook example of genetic differentiation in sympatry via host‐plant shifting. Microsatellite markers can be useful for mapping host‐plant‐associated adaptations in Rhagoletis that generate reproductive isolation and facilitate speciation, as well as for resolving the genetic structure and evolutionary history of fly populations.  相似文献   

7.
1. Molecular approaches have increasingly revealed hidden genetic structure within ecologically important species, leading to the creation of sibling species whose ecological relevance is often unclear. A prime example is Daphnia galeata mendotae, which was split into D. dentifera and D. mendotae based on differences at two allozyme loci. 2. In a set of lake populations in Michigan USA, we test the geographical and temporal consistency of the genetic structure underlying this species split. We also test the morphological relevance of this molecular variation and its ecological significance in lakes. In essence, we ask: does recognition of these new species provide valuable information for plankton ecologists? 3. We found that D. dentifera and D. mendotae represent morphologically and ecologically distinct forms that are distributed among lakes in non‐random fashion, which were remarkably stable over 6 years. Key differences between the species concern their body and head shape, vertical habitat use within lakes and distribution among lakes of different size. We hypothesise that these differences represent specialisation to habitats that differ in risk of invertebrate predation. 4. Reproductive barriers alone are insufficient to explain the pattern of genetic structure; in some lakes complete introgression is apparent. However, parent species and hybrids exhibit a stable co‐existence in many lakes, which suggests that ecological specialisation reinforces divergence within this taxon.  相似文献   

8.
The genetic structure of a stream-dwelling fish, the Greenside Darter, Etheostoma blennioides, is described from variation at nine microsatellite loci in 26 populations in the northern-most portions of the species’ range in southern Ontario, Canada in two sampling years. We found relatively high levels of genetic structure at the among- and within-watershed scales, with some watersheds and populations exhibiting very high divergence. The Ausable River populations were especially isolated, containing distinct populations of potential conservation concern. Temporal replicates at selected localities showed evidence of substantial temporal variation in genetic structure, perhaps resulting from movement among sites. We found strong evidence for an effect of river barriers (dams and weirs) on dispersal measured by genotype assignment techniques. However, we found no bias in upstream vs downstream dispersal. Significant isolation-by-distance relationships in both sample years indicate that river distance is an important factor regulating gene flow in these watersheds. The Canadian Greenside Darter populations are expanding their range into more northerly watersheds, but also show substantial within-watershed genetic structure despite substantial dispersal.  相似文献   

9.
Soil seed banks may accumulate and store seed genotypes produced over many seasons. If germination and establishment of these soil seeds are influenced by seed genotypes, then seed bank and seedling populations may differ genetically. I compared the genetic structure of dormant but viable soil seeds of the desert mustard Lesquerella fendleri with the genetic structure of Lesquerella seedlings at the Sevilleta Long-Term Ecological Research Site. In 1991 and 1992, soil seeds and seedlings were mapped and genetically analyzed using starch gel electrophoresis. When data from all loci were lumped, there were highly significant differences in allele frequencies between soil seeds and seedlings at the population level (all plots) in both years, in all subpopulation (adjacent plots) comparisons in 1991, and three of five subpopulations in 1992. Differences at some individual loci were also detected in one or both years. Analysis of data pooled across both years revealed highly significant differences in the distribution of multilocus soil seed and seedling heterozygosity, but no significant differences in mean heterozygosity. Fst values showed small but statistically significant genetic differentiation within soil seeds and seedlings in both years. Fst values also showed significant genetic differentiation between these two groups at three of seven loci in 1991, and at one locus in 1992. Soil seeds and seedlings showed a general pattern of decreasing genetic relationship with distance, as estimated by the coefficient of coancestry analyses. In 1991, seedlings were roughly twice as genetically related to each other than were soil seeds at fine spatial scales (0–0.25 and 0.25–0.50 m). This study suggests that Lesquerella seedlings in this system represent a nonrandom genetic subset of the underlying Lesquerella seed bank. Such temporal genetic change may be an important yet frequently overlooked mechanism for generating population genetic structure.  相似文献   

10.
Twelve microsatellite markers were isolated from chub Leuciscus cephalus Linné, 1766 (Cyprinidae), a freshwater fish widely distributed in Europe. We assessed the level of genetic diversity for these loci in 24 individuals sampled in the Rhone river watershed. Nine loci were polymorphic, displaying from two to 13 alleles per locus with expected heterozygosity ranging from 0.160 to 0.887. Simultaneous migration of different polymerase chain reaction products was developed for routine analysis of L. cephalus populations.  相似文献   

11.
12.
The spatial and temporal genetic structure of brown trout populations from three small tributaries of Lake Hald, Denmark, was studied using analysis of variation at eight microsatellite loci. From two of the populations temporal samples were available, separated by up to 13 years (3.7 generations). Significant genetic differentiation was observed among all samples, however, hierarchical analysis of molecular variance (AMOVA) showed that differentiation among populations accounted for a non-significant amount of the genetic differentiation, whereas differentiation among temporal samples within populations was highly significant (0.0244, P<0.001). Estimates of effective population size (N e) using a maximum-likelihood based implementation of the temporal method, yielded small values (N e ranging from 33 to 79). When a model was applied that allows for migration among populations, N e estimates were even lower (24–54), and migration rates were suggested to be high (0.13–0.36). All samples displayed a clear signal of a recent bottleneck, probably stemming from a period of unfavourable conditions due to organic pollution in the 1970–1980’s. By comparison to other estimates of N e in brown trout, Lake Hald trout represent a system of small populations linked by extensive gene flow, whereas other populations in larger rivers exhibit much higher N e values and experience lower levels of immigration. We suggest that management considerations for systems like Lake Hald brown trout should focus both on a regional scale and at the level of individual populations, as the future persistence of populations depends both on maintaining individual populations and ensuring sufficient migration links among these populations.  相似文献   

13.
A key question in many genetic studies on marine organisms is how to interpret a low but statistically significant level of genetic differentiation. Do such observations reflect a real phenomenon, or are they caused by confounding factors such as unrepresentative sampling or selective forces acting on the marker loci? Further, are low levels of differentiation biologically trivial, or can they represent a meaningful and perhaps important finding? We explored these issues in an empirical study on coastal Atlantic cod, combining temporally replicated genetic samples over a 10‐year period with an extensive capture–mark–recapture study of individual mobility and population size. The genetic analyses revealed a pattern of differentiation between the inner part of the fjord and the open skerries area at the fjord entrance. Overall, genetic differentiation was weak (average FST = 0.0037), but nevertheless highly statistical significant and did not depend on particular loci that could be subject to selection. This spatial component dominated over temporal change, and temporal replicates clustered together throughout the 10‐year period. Consistent with genetic results, the majority of the recaptured fish were found close to the point of release, with <1% of recaptured individuals dispersing between the inner fjord and outer skerries. We conclude that low levels of genetic differentiation in this marine fish can indeed be biologically meaningful, corresponding to separate, temporally persistent, local populations. We estimated the genetically effective sizes (Ne) of the two coastal cod populations to 198 and 542 and found a Ne/N (spawner) ratio of 0.14.  相似文献   

14.
The noctuid moth Zale galbanata is described as feeding on maples (Acer sp.) in general, but its primary food plant is box elder (Acer negundo). We isolated five microsatellite loci to investigate the association of food plant use and the genetic similarity of populations in these moths. These markers are polymorphic to various degrees (5–13 alleles), and are presented here. Our initial tests show that some of these loci also work on other Zale species.  相似文献   

15.
We determined the genetic diversity and population structures ofCarex breviculmis (Cyperaceae) populations in Korea, using genetic variations at 23 allozyme loci.C. breviculmis is a long-lived herbaceous species that is widely distributed in eastern Asia. A high level of genetic variation was found in 15 populations. Twelve enzymes revealed 23 loci, of which 11 were polymorphic (47.8%). Genetic diversity at the speciesand population levels were 0.174 and 0.146, respectively. Total genetic diversity (HT = 0.363) and within-population genetic diversity (Hs = 0.346) were high, whereas the extent of the population divergence was relatively low (GST = 0.063). Deviation from random mating (Fis) within the 15 populations was 0.206. An indirect estimate of the number of migrants per generation(Nm = 3.69) indicated that gene flow was extensive among Korean populations of this species. Analysis of fixation indices revealed a substantial heterozygote deficiency in some populations and at some loci. Genetic identity between popu-lations was high, exceeding 0.956.  相似文献   

16.
In order to study the genetic diversity and structure in the population of Vitellaria paradoxa, we characterized eight polymorphic microsatellite loci. Primers to amplify these loci were tested on 169 individual trees representing a sample of the population of shea tree in Mali. The loci were all polymorphic with a number of alleles between three to nine and with observed level of heterozygosity ranging from 0.035 to 0.507. These markers will be useful for genetic and ecological studies of this species.  相似文献   

17.
18.
Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish (Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.  相似文献   

19.
20.
Analysis of population genetic structure is a key aspect to understand insect pest population dynamics in agricultural scenarios. Here the role of geography, hosts and time on the population genetic structure of codling moth Cydia pomonella (Linnaeus) (Lep., Tortricidae) populations is described. Temporal variation was examined in two French orchards among each of three adult flights during two successive years. Analyses were conducted using two insecticide resistance markers (variation at the sodium channel gene and enzymatic activity of cytochrome P450 oxidases) and three microsatellite loci. Levels of genetic variation among temporal populations were not significant based on variation in the sodium channel gene and microsatellite loci. However, P450 oxidase activity differed significantly during both flights and years, decreasing during the three flights of the first year and increasing during the second. These results suggest that phytosanitary measures are among the factors shaping the genetic structure of C. pomonella populations over temporal and geographical scales. We discuss the relative importance of natural and passive dispersal related to anthropogenic activities affecting C. pomonella population genetics and highlight population genetic research needs in order to design more efficient pest management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号