首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocytes in arthriticcartilage respond poorly to insulin-like growth factor I (IGF-I).Studies with inducible nitric oxide synthase (iNOS) knockout micesuggest that NO is responsible for part of the cartilage insensitivityto IGF-I. These studies characterize the relationship between NO andchondrocyte responses to IGF-I in vitro, and define a mechanism bywhich NO decreases IGF-I stimulation of chondrocyte proteoglycansynthesis. Lapine cartilage slices, chondrocytes, and cartilage fromosteoarthritic (OA) human knees were exposed to NO from the donorsS-nitroso-N-acetylpenicillamine (SNAP) or(Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate] (DETA NONOate), by transduction with adenoviral transfer of iNOS (Ad-iNOS), or by activation with interleukin-1 (IL-1). NOsynthesis was estimated from medium nitrite, and proteoglycan synthesis was measured as incorporation of 35SO4. IGF-Ireceptor phosphorylation was evaluated with Western analysis. SNAP,DETA NONOate, endogenously synthesized NO in Ad-iNOS-transduced cells,or IL-1 activation decreased IGF-I-stimulated proteoglycan synthesis incartilage and monolayer cultures of chondrocytes. OA cartilageresponded poorly to IGF-I; however, the response to IGF-I was restoredby culture withNG-monomethyl-L-arginine(L-NMA). IGF-I receptor phosphotyrosine was diminished inchondrocytes exposed to NO. These studies show that NO is responsiblefor part of arthritic cartilage/chondrocyte insensitivity to anabolicactions of IGF-I; inhibition of receptor autophosphorylation ispotentially responsible for this effect.

  相似文献   

2.
Vascular injury increases nitric oxide (NO) levels, and this effect may play a counterregulatory role in neointima formation, by decreasing vascular smooth muscle cell motility. However, the mechanisms underlying this effect are not well established. We tested the hypothesis that NO decreases cell motility by increasing the activity of a protein tyrosine phosphatase (PTP), PTP-PEST, in cultured rat aortic smooth muscle cells. Two NO donors increased the activity of PTP-PEST. A cGMP analog mimicked the effect of NO, whereas a guanyl cyclase inhibitor blocked it, indicating that elevated cGMP is both necessary and sufficient to induce PTP-PEST activity. Overexpression of wild-type PTP-PEST induced antimotogenesis, whereas expression of dominant negative PTP-PEST blocked the antimotogenic effect of NO, indicating that increased PTP-PEST activity is both sufficient and necessary to explain the effect of NO. Overexpression of PTP-PEST mimicked NO-induced dephosphorylation of adapter protein p130cas, whereas dominant negative PTP-PEST blocked the effect of NO, indicating that upregulation of PTP-PEST is both necessary and sufficient to explain NO-induced p130cas dephosphorylation. Expression of a substrate domain-deleted p130cas decreased motogenesis, whereas overexpression of wild-type p130cas blocked the antimotogenic effect of NO, indicating the functional importance of p130cas dephosphorylation. NO induced dissociation of the Cas-Crk complex, an effect that was mimicked by overexpression of PTP-PEST and opposed by expression of dominant negative PTP-PEST. Our results indicate that NO decreases aortic smooth muscle cell motility via a cGMP-mediated mechanism, involving upregulation of PTP-PEST, in turn inducing dephosphorylation of p130cas, and likely involving Cas-Crk dissociation as a downstream event.  相似文献   

3.
We previously reportedthat exposure of endothelial cells to H2O2results in a loss of cell-cell apposition and increased endothelialsolute permeability. The purpose of this study was to determine howtyrosine phosphorylation and tyrosine phosphatases contribute tooxidant-mediated disorganization of endothelial cell junctions. Wefound that H2O2 caused a rapid decrease in total cellular phosphatase activity that facilitates a compensatory increase in cellular phosphotyrosine residues.H2O2 exposure also results in increasedendothelial monolayer permeability, which was attenuated by pp60, aninhibitor of src kinase. Inhibition of protein tyrosinephosphatase activity by phenylarsine oxide (PAO) demonstrated a similarpermeability profile compared with H2O2,suggesting that tyrosine phosphatase activity is important inmaintaining a normal endothelial solute barrier. Immunofluorescence shows that H2O2 exposure caused a loss ofpan-reactive cadherin and -catenin from cell junctions that was notblocked by the src kinase inhibitor PP1.H2O2 also caused -catenin to dissociate fromthe endothelial cytoskeleton, which was not prevented by PP1. Finally,we determined that PP1 did not prevent cadherin internalization. Thesedata suggest that oxidants like H2O2 produce biological effects through protein phosphotyrosine modifications bydecreasing total cellular phosphatase activity combined with increasedsrc kinase activity, resulting in increased endothelial solute permeability.

  相似文献   

4.
Raphidophycean flagellates, Chattonella marina and C. ovata,are harmful red tide phytoplankters; blooms of these phytoplanktersoften cause severe damage to fish farming. Previous studieshave demonstrated that C. marina and C. ovata continuously producereactive oxygen species (ROS) such as superoxide anion (O2)hydrogen peroxide (H2O2) under normal growth conditions, andan ROS-mediated toxic mechanism against fish and other marineorganisms has been proposed. Although the exact mechanism ofROS generation in these phytoplankters still remains to be clarified,our previous study suggested that NADPH oxidase-like enzymelocated on the cell surface of C. marina may be involved inO2 generation. To investigate the localization of O2and H2O2 generation in C. marina and C. ovata, we employed 2-methyl-6(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-oneand 5-(and-6)-carboxy-2',7'-dichlorodihydrodihydrofluoresceindictate, acetyl ester, which are specific fluorescent probefor detecting O2 and H2O2, respectively. Observationby fluorescence microscopy of live phytoplankters incubatedwith each probe revealed that O2 is mainly generatedon the cell surface, whereas H2O2 is generated in the intracellularcompartment in these phytoplankters. When the cells were rupturedby ultrasonic treatment, O2 levels of C. marina and C.ovata decreased significantly, whereas a few times higher levelsof H2O2 were detected in the ruptured cell suspensions whencompared with the levels of the live cell suspension. In immunoblottinganalysis, the protein recognized by anti-human gp91 phox wasdetected in both species. These results suggest that, in bothphytoplankters, the underlying mechanisms of O2 and H2O2generation may be distinct and such systems are independentlyoperating in the cells.  相似文献   

5.
H2O2 is an essential signal in absicic acid (ABA)-induced stomatalclosure. It can be synthesized by several enzymes in plants.In this study, the roles of copper amine oxidase (CuAO) in H2O2production and stomatal closure were investigated. ExogenousABA stimulated apoplast CuAO activity, increased H2O2 productionand [Ca2+]cyt levels in Vicia faba guard cells, and inducedstomatal closure. These processes were impaired by CuAO inhibitor(s).In the metabolized products of CuAO, only H2O2 could inducestomatal closure. By the analysis of enzyme kinetics and polyaminecontents in leaves, putrescine was regarded as a substrate ofCuAO. Putrescine showed similar effects with ABA on the regulationof H2O2 production, [Ca2+]cyt levels, as well as stomatal closure.The results suggest that CuAO in V. faba guard cells is an essentialenzymatic source for H2O2 production in ABA-induced stomatalclosure via the degradation of putrescine. Calcium messengeris an important intermediate in this process. Key words: Abscisic acid, calcium, copper amine oxidase, hydrogen peroxide, putrescine, stomatal closure, Vicia faba Received 13 October 2007; Revised 16 December 2007 Accepted 20 December 2007  相似文献   

6.
Nitric oxide (NO) production by inducible NO synthase (iNOS) is dependent on O2 availability. The duration and degree of hypoxia that limit NO production are poorly defined in cultured cells. To investigate short-term O2-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time of 1.6 s) and accurately (±1 Torr) deliver specific O2 tensions (from <1 to 157 Torr) directly to a monolayer of LPS- and IFN-stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O2 availability rapidly (30 s) and reversibly decreased NO production with an apparent KmO2 of 22 (SD 6) Torr (31 µM) and a Vmax of 4.9 (SD 0.4) nmol·min–1·10–6 cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O2-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected (P = 0.895). iNOS dimerization appeared to be biphasic [6 Torr (P = 0.008) and 157 Torr (P = 0.258) >36 Torr], but it did not predict NO production. NO consumption was minimal at high O2 and NO tensions and negligible at low O2 and NO tensions. These results are consistent with O2 substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O2 tensions suggest that O2 tension has the potential to regulate NO production in vivo. inducible nitric oxide synthase; substrate limitation; nitric oxide consumption  相似文献   

7.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

8.
Cultures of water fern Azolla pinnata R. Br. exposed for 1 weekto either 30, 50 or 80 nl l-1 O3 showed significant reductionsin rates of growth and N2 fixation, and had fewer heterocysts.Although the levels of glutamine synthetase (GS) and glutamatedehydrogenase (GDH) activity were decreased by low concentrationsof O3 exposures (30 or 50 nl l-1), significant increases inlevels of the same enzymes were caused by higher concentrationsof O3 (80 nl l-1). Increased levels of total protein, polyamines(putrescine and spermidine), and the xanthophyll-cycle precursorof abscisic acid (ABA), violaxanthin, were also found with higherlevels of O3 (80 nl l-1). Levels of ABA itself were significantlyincreased by low level O3 fumigation (30 nl l-1) but significantlydecreased by exposure to 80 nl l-1 O3. This may indicate thathigher levels of atmospheric O3 inhibit the final stages ofABA biosynthesis from violaxanthin.Copyright 1994, 1999 AcademicPress Abscisic acid, nitrogen assimilation, nitrogen fixation, ozone pollution, polyamines, violaxanthin  相似文献   

9.
We studied the influence ofnitric oxide (NO) endogenously produced by adipocytes in lipolysisregulation. Diphenyliodonium (DPI), a nitric oxide synthase (NOS)inhibitor, was found to completely suppress NO synthesis in intactadipocytes and was thus used in lipolysis experiments. DPI was found todecrease both basal and dibutyryl cAMP (DBcAMP)-stimulatedlipolysis. Inhibition of DBcAMP-stimulated lipolysis by DPI wasprevented by S-nitroso-N-acetyl-penicillamine (SNAP), a NO donor. This antilipolytic effect of DPI was also preventedby two antioxidants, ascorbate or diethyldithiocarbamic acid (DDC).Preincubation of isolated adipocytes with DPI (30 min) before exposureto DBcAMP almost completely abolished the stimulated lipolysis.Addition of SNAP or antioxidant during DPI preincubation restored thelipolytic response to DBcAMP, whereas no preventive effects wereobserved when these compounds were added simultaneously to DBcAMP.Exposure of isolated adipocytes to an extracellular generating systemof oxygen species (xanthine/xanthine oxidase) or toH2O2 also resulted in an inhibition of thelipolytic response to DBcAMP. H2O2 or DPIdecreased cAMP-dependent protein kinase (PKA) activation. The DPIeffect on PKA activity was prevented by SNAP, ascorbate, or DDC. Theseresults provide clear evidence that 1) the DPI antilipolyticeffect is related to adipocyte NOS inhibition leading to PKAalterations, and 2) endogenous NO is required for the cAMPlipolytic process through antioxidant-related effect.

  相似文献   

10.
The mechanism underlying H2O2-inducedactivation of frog skeletal muscle ryanodine receptors was studiedusing skinned fibers and by measuring single Ca2+-releasechannel current. Exposure of skinned fibers to 3-10 mM H2O2 elicited spontaneous contractures.H2O2 at 1 mM potentiated caffeine contracture.When the Ca2+-release channels were incorporated into lipidbilayers, open probability (Po) and open timeconstants were increased on intraluminal addition ofH2O2 in the presence of cis catalase,but unitary conductance and reversal potential were not affected.Exposure to cis H2O2 at 1.5 mM failedto activate the channel in the presence of trans catalase.Application of 1.5 mM H2O2 to the transside of a channel that had been oxidized by cisp-chloromercuriphenylsulfonic acid (pCMPS; 50 µM) still led to anincrease in Po, comparable to that elicited bytrans 1.5 mM H2O2 without pCMPS.Addition of cis pCMPS to channels that had been treated with orwithout trans H2O2 rapidly resulted inhigh Po followed by closure of the channel. Theseresults suggest that oxidation of luminal sulfhydryls in theCa2+-release channel may contribute toH2O2-induced channel activation and musclecontracture.

  相似文献   

11.
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. apoptosis; calcium; endoplasmic reticulum  相似文献   

12.
Hyperinsulinemia is a major risk factor for the development of vascular disease. We have reported that insulin increases the motility of vascular smooth muscle cells via a hydrogen peroxide-mediated mechanism and that nitric oxide (NO) attenuates insulin-induced motility via a cGMP-mediated mechanism. Events downstream of cGMP elevation have not yet been investigated. The aim of our study was to test the hypothesis that antimotogenic effects of NO and cGMP in cultured rat aortic smooth muscle cells are mediated via PKG, followed by reduction of cytoplasmic Ca(2+) levels and increased protein tyrosine phosphatase-proline, glutamate, serine, and threonine activity, leading to suppression of agonist-induced elevation of hydrogen peroxide levels and cell motility. Treatment of primary cultures with adenovirus expressing PKG-1alpha mimicked NO-induced inhibition of insulin-elicited hydrogen peroxide elevation and cell motility, whereas treatment with the pharmacological PKG inhibitor Rp-8-bromo-3',5'-cyclic monophosphorothioate (Rp-8-Br-cGMPS) rescued the stimulatory effects of insulin that were suppressed by NO donor. Treatment of cells with insulin failed to increase cytoplasmic Ca(2+) levels, whereas NO donor decreased cytoplasmic Ca(2+) levels in the presence or absence of insulin. Treatment of cells with the Ca(2+) chelator BAPTA mimicked the effects of PKG and the NO donor and increased the activity of PTP-PEST. Finally, treatment with a dominant negative allele of PTP-PEST reversed the inhibitory effect of BAPTA on cell motility and hydrogen peroxide elevation. We conclude that NO-induced inhibition of cell motility occurs via PKG-mediated reduction of basal cytoplasmic Ca(2+) levels, followed by increased PTP-PEST activity, leading to decreased hydrogen peroxide levels and reduced cell motility.  相似文献   

13.
Blooms of the toxic red tide phytoplankton Heterosigma akashiwo(Raphidophyceae) are responsible for substantial losses withinthe aquaculture industry. The toxicological mechanisms of H.akashiwoblooms are complex and to date, heavily debated. One putativetype of ichthyotoxin includes the production of reactive oxygenspecies (ROS) that could alter gill structure and function,resulting in asphyxiation. In this study, we investigated thepotential of H.akashiwo to produce extracellular hydrogen peroxide,and have investigated which cellular processes are responsiblefor this production. Within all experiments, H.akashiwo producedsubstantial amounts of hydrogen peroxide (up to 7.6 pmol min–1104 cells–1), resulting in extracellular concentrationsof ~0.5 µmol l–1 H2O2. Measured rates of hydrogenperoxide production were directly proportional to cell density,but at higher cell densities, accuracy of H2O2 detection wasreduced. Whereas light intensity did not alter H2O2 production,rates of production were stimulated when temperature was elevated.Hydrogen peroxide production was not only dependent on growthphase, but also was regulated by the availability of iron inthe medium. Reduction of total iron to 1 nmol l–1 enhancedthe production of H2O2 relative to iron replete conditions (10µmol l–1 iron). From this, we collectively concludethat production of extracellular H2O2 by H.akashiwo occurs througha metabolic pathway that is not directly linked to photosynthesis.  相似文献   

14.
  1. Chlorella cells and spinach chioroplasts, whose catalase activityhad been more than 90% inhibited by 10–5 M azide, werefound to decompose H2O2 photochemically to liberate oxygen,indicating that H2O2 was used as an oxidant of the HILL reaction.
  2. That, however, the observed phenomena cannot be fully accountedfor in terms of the HILL reaction with H2O2 was revealed bythe observation that an extract of Chiorella cells, which hadbeen completely freed from chlorophyll, also showed a light-acceleratedO2 evolution from H2O2 in the presence of 105 M azide.This extract contained a large quantity of catalase, which seemedto have been, in some way, involved in the reaction in question.
  3. The catalatic H2O2 decomposition caused by crystalline catalaseof mammalian liver (in the presence of 10–5 M azide) wasnot accelerated by the effect of light.
1 Present address: Department of Biology, Faculty of Science,Niigata University, Niigata. (Received June 4, 1961; )  相似文献   

15.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

16.
The unicellular marine phytoplankton Chattonella marina is knownto exhibit potent fish-killing activity. Previous studies havedemonstrated that C. marina produces reactive oxygen species(ROS), and ROS-mediated ichthyotoxic mechanism has been postulated.However, the exact toxic mechanism is still controversial. Inthis study, we obtained evidence that C. marina produces nitricoxide (NO) under normal growth conditions. We utilized chemiluminescence(CL) reaction between NO and luminol–H2O2 to detect NOin C. marina cell suspensions. In this assay, significant CLwas observed in C. marina in a cell-number-dependent manner,and this was diminished by the addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(carboxy-PTIO), a specific NO scavenger. The NO generation byC. marina was also confirmed by a spectrophotometric assay basedon the measurement of the diazo-reaction-positive substances(NOx) and by fluorometric assay using highly specific fluorescentindicator of NO. The NO level in C. marina was significantlydecreased by NG-nitro-L-arginine methyl ester (L-NAME), a specificNO synthase (NOS) inhibitor. The addition of L-arginine resultedin the increased NO level, whereas NaNO2 had no effect. Theseresults suggest that a NOS-like enzyme is mainly responsiblefor NO generation in C. marina.  相似文献   

17.
It is commonly believed thatthe activity of NO synthase (NOS) solely controls NO production fromits substrates, L-Arg and O2. The Michaelis-Menten constant(Km) of NOS forL-Arg is in the micromolarrange; cellular levels of L-Argare much higher. However, evidence strongly suggests that cellularsupply of L-Arg may becomelimiting and lead to reduced NO and increased superoxide anion(O2·) formation, promotingcardiovascular dysfunction. Uptake ofL-Arg into cells occursprimarily (~85%) through the actions of aNa+-independent, carrier-mediatedtransporter (system y+). We haveexamined the effects of NOS agonists (substance P, bradykinin, and ACh)and NO donors(S-nitroso-N-acetyl-penicillamine and dipropylenetriamine NONOate) on transport ofL-Arg into bovine aorticendothelial cells (BAEC). Our results demonstrate that NOS agonistsincrease y+ transporter activity.A rapidly acting NO donor initially increases L-Arg uptake; however, afterlonger exposure, L-Arg uptake is suppressed. Exposure of BAEC withoutL-Arg to substance P and aCa2+ ionophore (A-23187) increasedO2· formation, which was blockedwith concurrent presence ofL-Arg or the NOS antagonistN-nitro-L-arginine methyl ester.We conclude that factors including NO itself controly+ transport function and theproduction of NO and O2·.

  相似文献   

18.
We examined theeffect of low concentrations of H2O2 on theCa2+-release channel/ryanodine receptor (RyR) to determineif H2O2 plays a physiological role in skeletalmuscle function. Sarcoplasmic reticulum vesicles from frog skeletalmuscle and type 1 RyRs (RyR1) purified from rabbit skeletal muscle wereincorporated into lipid bilayers. Channel activity of the frog RyR wasnot affected by application of 4.4 mM (0.02%) ethanol. Openprobability (Po) of such ethanol-treated RyRchannels was markedly increased on subsequent addition of 10 µMH2O2. Increase of H2O2to 100 µM caused a further increase in channel activity. Applicationof 4.4 mM ethanol to 10 µM H2O2-treated RyRsactivated channel activity. Exposure to 10 or 100 µMH2O2 alone, however, failed to increasePo. Synergistic action of ethanol andH2O2 was also observed on the purified RyR1 channel, which was free from FK506 binding protein (FKBP12).H2O2 at 100-500 µM had no effect onpurified channel activity. Application of FKBP12 to the purified RyR1drastically decreased channel activity but did not alter the effects ofethanol and H2O2. These results suggest thatH2O2 may play a pathophysiological, butprobably not a physiological, role by directly acting on skeletalmuscle RyRs in the presence of ethanol.

  相似文献   

19.
Seventy-five per cent of the N2-fixing activity (measured asthe reduction of C2H2 to C2H4) and 50 per cent of the respiratoryactivity of detached soybean root nodules was lost when thewater potential () of the nodules was lowered from approximately–1 ? 105 Pa (turgid nodules) to –9 ? 105 Pa (moderatelystressed nodules). Severely stressed nodules ( = –1.8? 106 Pa) showed almost total loss of N2-fixing activity andup to 80 per cent loss of respiratory activity. Increasing theoxygen partial pressure (PO2) from 104 to 105 Pa completelyrestored both N2-fixation and respiration in moderately stressednodules, but only partial recovery was possible in severelystressed nodules. The activity of the stressed nodules was verylow at low PO2 (5 ? 103 and 104 Pa). The C2H2-reducing activityof nodule slices, nodule breis, and bacteroids from turgid andmoderately stressed nodules was almost identical but some activitywas lost in the breis and bacteroids from severely stressednodules. Calculations showed that at low PO2 (104 and 2 ? 104Pa), the rate of O2 diffusion into severely stressed noduleswas ten times lower than that for turgid nodules, but only fourtimes lower at a higher PO2 (4 ? 104 Pa). Carbon monoxide inhibitionof C2H2 reduction was slower in stressed nodules than in turgidnodules. The results are discussed in view of the possible developmentof a physical barrier to gaseous diffusion and/or the possiblealtered affinity of the nodule leghaemoglobin for O2 in thewater-stressed nodules.  相似文献   

20.
Yellow prisms of asparagusic acid, with a molecular formulaof C4H6O2S2 were isolated from etiolated asparagus tissues (Asparagusofficinalis L.). This acid inhibits growth in lettuce and otherseedlings when applied in concentrations of 6.67x10–7Mto 6.67xl0–7M. The extent of activity was very similarto that of abscisic acid. 1 A well known shift reagent in the NMR spectrum (1). (Received April 12, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号