首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injection of heat-killed bacteria into larvae of the greater wax moth Galleria mellonella is followed by changes in lipoprotein composition in the hemolymph. Density gradient centrifugation experiments revealed that within the first four hours after injection, a part of larval lipoprotein, high-density lipophorin (HDLp), was converted into a lipoprotein of lower density. SDS-polyacrylamide gel electrophoresis analysis of the gradient fractions and sequencing of protein fragments, established that the exchangeable apolipoprotein apolipophorin III (apoLp-III), a potent immune-activator, was associated with this newly formed lipophorin. To investigate further the influence of lipophorin-associated apoLp-III on immune-related reactions, we performed in vitro studies with isolated hemocytes from G. mellonella and lipophorins from the sphinx moth Manduca sexta, as a natural source of high amounts of low-density lipophorin (LDLp) and HDLp. The hemocytes were activated to form superoxide radicals upon incubation with LDLp, but not with HDLp. Fluorescence-labeled LDLp was specifically taken up by granular cells. This process was inhibited by adding an excess of unlabeled LDLp, but not by HDLp. We hypothesize that larval lipophorin formed in vivo is an endogenous signal for immune activation, specifically mediated by the binding of lipid-associated apoLp-III to hemocyte membrane receptors.  相似文献   

2.
Spleen lymphocytes from mice immunized with locust native low-density lipophorin A+ (LDLp) were fused with nonproducing myeloma cells, strain Sp 2/0. Hybridomas that were isolated from the fused cells produced antibodies specific for LDLp and the high-density lipophorin Ayellow (HDLp). Monoclonal strains were generated through cloning by limiting dilution from those hybridomas synthesizing antibodies specific for apolipophorins (apoLp)-I, -II, and -III of LDLp. Additionally, a hybridoma strain that was obtained after fusion of lymphocytes from mice immunized with apoLp-III produced antibodies that bind to apoLp-III and native LDLp. Some features of LDLp and HDLp were studied using these antibodies. It could be demonstrated that apoLp-I and apoLp-II are not immunochemically identical and are exposed in the native particle of both LDLp and HDLp. It was also shown that in both lipophorins apoLp-II is less exposed than apoLp-I, whereas in LDLp apoLp-III is mainly exposed; some apoLp-III could also be detected in HDLp. Tween-20, a nonionic detergent, appears to affect the binding of anti-apoLp-I, -II, and -III to both LDLp and HDLp. The monoclonal antibodies specific for locust apolipophorins do not bind to the respective apoproteins of lipophorins from other insects.  相似文献   

3.
To identify and characterize the HDLp (high-density lipophorin) receptor from Galleria mellonella (LpRGm), we used techniques of ligand blotting. This method was, to our knowledge, first used to characterize the lipophorin receptor (LpR) in insects. LpRGm had an approximate molecular weight of 97 kDa under non-reducing conditions and bound the HDLp specifically. The time-course of lipophorin binding to their receptor protein was rapid. The binding of lipophorins to their receptors was saturable with a Kd of 34.33+/-4.67 microg/ml. Although Ca2+ was essentially required in the binding of HDLp to their receptors, interestingly increasing concentration of Ca2+ has shown to have a slight inhibitory effect. EDTA was used here as Ca2+ chelating reagent, because Mg2+ in the binding buffer did not affect the binding of HDLp to their receptors, and inhibited the binding of HDLp and LpRGm absolutely. Suramin (polysulfated polycyclic hydrocarbon), known to inhibit the binding of lipoproteins to their receptors, effectively abolished the binding of HDLp to their receptors. LpRGm showed the stage specific binding activity especially in day 1-3 last instar larval, prepupal, and day 1-3 adult stages.  相似文献   

4.
A novel reaction, catalyzed by Manduca sexta lipid transfer particle (LTP), transforms low density lipophorin (LDLp) into two distinct lipoprotein species. A population of LDLp particles serves as lipid donor or acceptor in LTP-catalyzed production of a very low density lipophorin (VLDLp) and a high density lipophorin (HDLp) product. The products result from facilitated net transfer of lipid mass from donor LDLp particles to acceptor LDLp particles. Transfer of apolipophorin III (apoLp-III) from donor to acceptor lipoprotein occurs during the reaction to produce a lipid- and apoLp-III-enriched VLDLp species and lipid- and apoLp-III-depleted HDLp species. The VLDLp produced in this in vitro reaction contains more lipid and apoLp-III than any previous lipophorin species reported and further demonstrates the scope of the lipid binding capacity of lipophorin. Lipid analysis and radiolabeling studies confirmed that unidirectional net transfer of lipid mass and apoLp-III from donor to acceptor occurs. When 3H-lipid-LDLp was used as substrate in the LTP-catalyzed disproportionation reaction the density distribution of radioactivity and protein provided evidence of vectorial transfer of diacylglycerol, phospholipid, and free fatty acids. Electron micrographs of the original LDLp population and of the LTP-induced product lipoprotein population provided further support for the interpretation derived from biochemical studies. This LTP-catalyzed disproportionation was observed only with apoLp-III-rich LDLp suggesting that the presence of increased amounts of this apoprotein dramatically affects the properties of the particle and appears to be directly related to the capacity of the lipoprotein to bind lipid.  相似文献   

5.
This study was designed to resolve basic questions concerning the nature of low density lipophorin (LDLp) which is induced by adipokinetic hormone (AKH). For this purpose, lipophorin was fractionated by density gradient ultracentrifugation and each fraction containing lipophorin was analyzed for diacylglycerol and associated apolipophorin-III (apoLp-III). The diacylglycerol content of LDLp fractions increased significantly as the density of the fraction decreased (116 micrograms/100 micrograms protein at a high density to 209 micrograms/100 micrograms protein at a lower density). On the other hand, the content of diacylglycerol in each fraction of HDLp remained almost constant (33 micrograms/100 micrograms protein). It was also found that the number of apoLp-III molecules associated with LDLp increased as the density decreased (from 6.9 mol/mol LDLp to 13.2 mol/mol LDLp). However, electron microscopic observation showed that LDLp particles in each of the fractions were extremely heterogeneous in size with diameters of 29.4 +/- 6.8 nm, 27.1 +/- 5.5 nm, and 26.3 +/- 5.7 nm for low, medium, and high density fraction, respectively. HDLp particles were very homogeneous in size irrespective of the fraction (15.9 +/- 1.5 nm, 15.6 +/- 1.5 nm, and 15.6 +/- 1.3 nm for the respective fractions). A theoretical analysis based on all the experimental data strongly supports the hypothesis that the heterogeneity in the size of LDLp particles does not reflect different densities, but rather, heterogeneity is the result of intermolecular fusion between LDLp particles of the same density.  相似文献   

6.
The formation of low-density lipophorin (LDLp) in insect hemolymph, resulting from association of high-density lipophorin (HDLp) with both lipid and apolipophorin III, is considered to provide a reutilizable lipid shuttle for flight muscle energy supply. The changes in lipid and apolipoprotein composition of LDLp, isolated after flight activity, compared to that of HDLp in the hemolymph at rest, were studied in two evolutionary divergent insects, the hawkmoth Acherontia atropos and the migratory locust, Locusta migratoria. Using FPLC on Superose 6 prep grade as a novel technique to separate the apolipophorins of HDLp and LDLp, the ratio of apolipoprotein I, II, and III in HDLp of both species was demonstrated to be 1:1:1, whereas flight activity resulted in a ratio of 1:1:10 in LDLp. Injection of adipokinetic hormone into resting moths showed that, depending on the dose, the number of apolipophorin III molecules in LDLp can exceed that recovered after the physiological condition of flight. Analysis of the lipophorin lipids demonstrated that in addition to the considerable increase in diacylglycerol in the LDLp particle, which is consistent with the role LDLp in energy supply, particularly the hydrocarbons were increased compared to HDLp, rendering the mechanism of LDLp formation from HDLp even more complex.  相似文献   

7.
An original method for the study of the lipid binding properties of exchangeable apolipoproteins is reported. Binding of Locusta migratoria apolipophorin-III to Manduca sexta low-density lipophorin (LDLp) and high-density lipophorin (HDLp) was studied in vivo. This assay could be used useful to investigate the effect of mutations in the lipid binding properties of exchangeable apolipoproteins under physiological conditions.  相似文献   

8.
Binding of locust high-density lipophorin (HDLp) to fat body proteins coated on immunoassay plates was studied using the ELISA method and ligand blotting techniques. HDLp binding proved to be correlated with the amount of fat body protein coated. From the concentration-dependent total HDLp binding an equilibrium dissociation constant could be calculated (Kd = 1.6 x 10(-8) M). Heparin inhibits the HDLp binding, indicating that positively charged groups are involved in the HDLp-fat body interaction. These groups were shown to be arginyl residues, as the arginine-specific treatment of HDLp by 1,2-cyclohexanedione resulted in a approximately 50% decrease in the binding ability of HDLp. HDLp binding is also affected by the pH. A decrease from pH 7.5 to pH 6.5 increases the binding affinity by approximately 250%. A monoclonal antibody specific for apolipophorin-II (apoLp-II) hampered the HDLp binding significantly, whereas a monoclonal anti-apoLp-I had no effect. Locust fat body HDLp binding proteins are highly specific for locust HDLp.  相似文献   

9.
The mechanism of the conversion of low-density lipophorin (LDLp) to high-density lipophorin (HDLp) in long-distance flight insects was investigated using a lipoprotein lipase from a bacterium, Alcaligenes sp. Diacylglycerol of LDLp was steadily hydrolyzed in vitro by the lipase, resulting in a 90% loss of diacylglycerol from LDLp during incubation. The "lipase-treated LDLp" thus obtained still contained associated apolipophorin-III (apoLp-III). These data suggest that the dissociation of apoLp-III is independent of the depletion of diacylglycerol from LDLp, and that the decrease in particle diameter caused by the depletion of diacylglycerol does not force the dissociation of apoLp-III from the lipophorin particle. Some physico-chemical properties of the lipase-treated LDLp were measured.  相似文献   

10.
A novel member of the low density lipoprotein (LDL) receptor family was identified, which is expressed in locust oocytes, fat body, brain, and midgut. This receptor appeared to be a homolog of the mammalian very low density lipoprotein receptor as it contains eight cysteine-rich repeats in its putative ligand-binding domain. When transiently expressed in COS-7 or stably expressed in LDL receptor-deficient CHO cells, the receptor mediates endocytic uptake of high density lipophorin (HDLp), an abundant lipoprotein in the circulatory compartment of insects. Moreover, in the latter cell line, we demonstrated that an excess of unlabeled HDLp competed with fluorescent labeled HDLp for uptake whereas an excess of human LDL did not affect uptake. Expression of the receptor mRNA in fat body cells is down-regulated during adult development, which is consistent with the previously reported down-regulation of receptor-mediated endocytosis of lipophorins in fat body tissue (Dantuma, N. P., M.A.P. Pijnenburg, J. H. B. Diederen, and D. J. Van der Horst. 1997. J. Lipid Res. 38: 254-265). The expression of this receptor in various tissues that internalize circulating lipophorins and its capability to mediate endocytosis of HDLp indicate that this novel member of the LDL receptor family may function as an endocytic lipophorin receptor in vivo.  相似文献   

11.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

12.
Insects transport lipid for flight in the form of diacylglycerol-rich low-density lipoproteins (low-density lipophorin, LDLp), which in the hemolymph are produced from high-density lipophorin (HDLp) by reversible association with several molecules of an apolipoprotein, apolipophorin III (apoLp-III, Mr approximately 18,000-20,000) during lipid loading. Two isoforms of apoLp-III (a and b) were purified both from adult Locusta migratoria migratorioides hemolymph and LDLp, which have identical apparent Mr but differ in amino acid composition, NH2-terminal amino acid sequence, and isoelectric points (5.35 +/- 0.01 for apoLp-IIIa, 5.10 +/- 0.01 for apoLp-IIIb). The NH2-terminal sequence of apoLp-IIIb is identical to the primary structure of apoLp-III deduced from cloned cDNA [Kanost et al. (1988) J. Biol. Chem. 263, 10,568-10,573], whereas the NH2-terminal sequence of apoLp-IIIa is identical to that of apoLp-IIIb but preceded by Arg-Pro-, which is the C-terminal of the putative signal peptide coded by cDNA upstream from that coding for apoLp-IIIb. The ratio apoLp-IIIa apoLp-IIIb free in hemolymph is identical to that in LDLp (5:9); since 14 molecules of apoLp-III appear to be bound in one molecule of LDLp, an average of 5 molecules of apoLp-IIIa and 9 of apoLp-IIIb are involved in formation of each LDLp particle. In vivo studies using 35S-labeled apoLp-IIIa and b demonstrate that each of the isoforms can associate with HDLp to produce LDLp reversibly; in an in vitro system, production of LDLp containing exclusively apoLp-IIIa or apoLp-IIIb demonstrates independent participation of each isoform in LDLp formation.  相似文献   

13.
In insects, lipids are transported by a hemolymphatic lipoprotein, lipophorin. The binding of lipophorin to the fat body of the hematophagous insect Rhodnius prolixus was characterized in a fat body membrane preparation, obtained from adult females. For the binding assay, purified lipophorin was radiolabelled in the protein moiety (125I-HDLp), and it was shown that iodination did not affect the affinity of the membrane preparation for lipophorin. Under incubation conditions used, lipophorin binding to membranes achieved equilibrium after 40-60 min, but this time was longer when a low concentration of lipophorin was present in the medium. The capacity of the fat body membrane preparation to bind lipophorin was abolished when membranes were pre-treated with trypsin, and it was also affected by heat. When 125I-HDLp was incubated with increasing concentrations of membrane protein, corresponding increases in binding were observed. Lipophorin binding was sensitive to pH, and it was maximal between pH 6.0 and 7.0. The specific binding of lipophorin to the fat body membrane preparation was a saturable process, with a Kd of 2.1 +/- 0.4 x 10(-7)M and a maximal binding capacity of 289 +/- 88 ng lipophorin/microgram of membrane protein. Binding to the fat body membranes did not depend on calcium, but it was affected by ionic strength, being totally inhibited at high salt concentrations. Suramin also interfered with lipophorin binding and it was abolished in the presence of 2 mM suramin, but at concentrations of 0.05 and 0.1 mM it seemed to increase binding activity slightly. Fat body membrane preparation from Rhodnius prolixus was able to bind lipophorin from Manduca sexta larvae.  相似文献   

14.
The insect low-density lipoprotein (LDL) receptor (LDLR) homolog, lipophorin receptor (LpR), mediates endocytic uptake of the single insect lipoprotein, high-density lipophorin (HDLp), which is structurally related to LDL. However, in contrast to the fate of LDL, which is endocytosed by LDLR, we previously demonstrated that after endocytosis, HDLp is sorted to the endocytic recycling compartment and recycled for re-secretion in a transferrin-like manner. This means that the integrity of the complex between HDLp and LpR is retained under endosomal conditions. Therefore, in this study, the ligand-binding and ligand-dissociation capacities of LpR were investigated by employing a new flow cytometric assay, using LDLR as a control. At pH 5.4, the LpR-HDLp complex remained stable, whereas that of LDLR and LDL dissociated. Hybrid HDLp-binding receptors, containing either the beta-propeller or both the beta-propeller and the hinge region of LDLR, appeared to be unable to release ligand at endosomal pH, revealing that the stability of the complex is imparted by the ligand-binding domain of LpR. The LpR-HDLp complex additionally appeared to be EDTA-resistant, excluding a low Ca(2+) concentration in the endosome as an alternative trigger for complex dissociation. From binding of HDLp to the above hybrid receptors, it was inferred that the stability upon EDTA treatment is confined to LDLR type A (LA) ligand-binding repeats 1-7. Additional (competition) binding experiments indicated that the binding site of LpR for HDLp most likely involves LA-2-7. It is therefore proposed that the remarkable stability of the LpR-HDLp complex is attributable to this binding site. Together, these data indicate that LpR and HDLp travel in complex to the endocytic recycling compartment, which constitutes a key determinant for ligand recycling by LpR.  相似文献   

15.
Lipophorin binding to the midgut of Manduca sexta larvae was characterized in a midgut membrane preparation, using iodinated larval high-density lipophorin ((125)I-HDLp-L). The iodination procedure did not change the affinity of the preparation for lipophorin. In the presence of increasing concentrations of membrane protein, corresponding increases in lipophorin binding were observed. The time-course of lipophorin binding to the membranes was affected by the lipophorin concentration in the medium, and at a low lipoprotein concentration, a longer time was required for equilibrium to be reached. The specific binding of lipophorin to the midgut membrane was a saturable process with a K(d) = 1.5+/-0.2x10(-7) M and a maximal binding capacity = 127+/-17 ng lipophorin/microg of membrane protein. Binding did not depend on calcium, was maximal around pH 5.5, was strongly inhibited by an increase in the ionic strength, and abolished by suramin. However, suramin did not completely displace lipophorin that was previously bound to the membrane preparation. The lipid content of the lipophorin did not significantly affect the affinity of the membrane preparation for lipoprotein.  相似文献   

16.
Role of lipophorin in lipid transport to the insect egg   总被引:4,自引:0,他引:4  
Lipid accounts for 40% of the dry weight of a mature Manduca sexta egg. Less than 1% of the total egg lipid is derived from de novo synthesis by the follicles. The remaining egg lipid originates in the fat body and is transported to the ovary by lipoproteins. Vitellogenin, the major egg yolk lipoprotein, accounts for 5% of the total egg lipid. The remaining 95% lipid is attributable to the hemolymph lipophorins, adult high density lipophorin (HDLp-A) and low density lipophorin (LDLp). When HDLp-A that is dual labeled with 3H in the diacylglycerol fraction and 35S in the protein moiety is incubated with follicles in vitro, the ratio of 3H:35S in the incubation medium does not vary and is similar to the ratio of the labels that are associated with the follicles. In an accompanying paper (Kawooya, J. K., Osir, E. O., and Law, J. H. (1988) J. Biol. Chem. 263, 8740-8747), we show that HDLp-A is sequestered by the follicles without subsequent hydrolysis of its apoproteins. These results, together with those presented in this paper, support our conclusion that HDLp-A is not recycled back into the hemolymph after it is internalized by the follicles and, therefore, does not function as a reusable lipid shuttle between the fat body and the ovary. When follicles are incubated with dual labeled LDLp, the diacylglycerol component of the particle is internalized by the follicles without concomitant endocytosis of its associated apoproteins. This LDLp particle is the major vehicle by which lipid is delivered to the ovary.  相似文献   

17.
The in vitro study was performed in order to demonstrate the structural changes of lipophorin induced in vivo by the injection of adipokinetic hormone (AKH) into adult locusts. After many unsuccessful attempts, we have established the reconstructed incubation system in which purified lipophorin and apolipophorin-III (9 mol/mol lipophorin) are incubated with the fat body in the presence of AKH under a supply of excess oxygen. In this system, high density lipophorin (HDLp) originally present in the incubation medium can be transformed entirely into low density lipophorin (LDLp) due to the loading of an increased amount of diacylglycerol from the fat body. The LDLp formed in this incubation system was exactly the same as the LDLp formed in vivo by the injection of AKH, in terms of density, particle size, diacylglycerol content, and the association with apolipophorin-III (apoLp-III). In the absence of apoLp-III, AKH did not exhibit its function to any extent. It was also demonstrated that the transformation of HDLp to LDLp requires calcium ions. Moreover, it appears that, up to a certain limit, the increase of diacylglycerol content of lipophorin and the amount of apoLp-III associated with lipophorin is nearly proportional to the amount of apoLp-III added to the incubation medium.  相似文献   

18.
Several classes of lipids are transported in insect hemolymph by lipophorin, a major hemolymphatic lipoprotein. The binding of lipophorin to the midgut of the hematophagous insect Rhodnius prolixus was characterized in a midgut membrane preparation, using purified lipophorin radiolabelled in protein moiety ((125)I-HDLp). Lipophorin specific binding to membranes achieved equilibrium after 30-40 min, was sensitive to pH, and was maximal at pH 7.0. In the presence of increasing concentrations of membrane protein, corresponding increases in lipophorin binding were observed. The specific binding of lipophorin to the membrane preparation was a saturable process, with K(d)=0.9+/-0.06 x 10(-7) M and a maximal binding capacity of 70+/-11 ng lipophorin/microg of membrane protein. Lipophorin binding did not depend on calcium, but it was affected by ionic strength and was inhibited in the presence of increasing salt concentrations. Suramin interfered with lipophorin binding to the midgut receptor, and it was abolished in the presence of 2 mM suramin, but at concentrations between 0.05 and 0.2 mM it was slightly increased. Condroitin 4-sulfate also affected lipophorin binding, which was reduced to 56% of control. Pre-incubation of the midgut membrane preparation with trypsin or at high temperature inhibited binding. Midgut capacity to bind lipophorin varied at different days after blood meal. It was highest at second day after feeding, and then gradually decreased.  相似文献   

19.
Lipid transport in the hemolymph of Manduca sexta is facilitated by a high density lipophorin in the resting adult insect (HDLp-A, d approximately 1.109 g/ml) and by a low density lipophorin during flight (LDLp, d approximately 1.060 g/ml). Lipophorin presumably shuttles different lipids between sites of uptake or storage, and sites of utilization. In order to shuttle lipid, a lipid-depleted lipophorin should be able to reload with lipid. To test this hypothesis, we used HDLp-A particles that were artificially depleted of either phospholipid (d approximately 1.118 g/ml) or diacylglycerol (d approximately 1.187 g/ml) and subsequently radiolabeled in their protein moiety. Upon injection into adult moths, both particles shifted their density to that of native HDLp-A, indicating lipid loading. Also, upon subsequent injection of adipokinetic hormone, both particles shifted to a lower density (d approximately 1.060 g/ml) indicating diacylglycerol loading and conversion to LDLp. Both phospholipid and diacylglycerol loading were also studied using an in vitro system. The lipid-depleted particles were incubated with fat body that had been radiolabeled in either the phospholipid or the triacylglycerol fraction. Transfer of radiolabeled phospholipid and diacylglycerol from fat body to lipophorin was observed. During diacylglycerol loading, apoLp-III associated with lipophorin, whereas phospholipid loading occurred in the absence of apoLp-III. The results show the ability of lipid-depleted lipophorins to reload with lipid and therefore reaffirm the role of lipophorin as a reusable lipid shuttle.  相似文献   

20.
Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [3H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-3H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号