首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

2.
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125–234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.Subject terms: Quantitative trait, Inbreeding  相似文献   

3.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

4.
Population size and the nature of genetic load in Gentianella germanica   总被引:1,自引:0,他引:1  
Abstract Theory predicts a significant relationship between the size of a population and the magnitude and composition of its genetic load, but few natural populations have been investigated. We examined the magnitude of genetic load due to recessive deleterious alleles (GL) both segregating and fixed within Gentianella germanica populations of varying size by selfing and reciprocally crossing plants within and between natural populations according to a partial diallel design and by comparing the performance of the experimental progeny in a common-garden experiment. The results show that GL for total fitness in small populations (fewer than 200 plants) was mainly due to fixed recessive deleterious alleles, whereas GL for total fitness in larger populations (more than 200 plants) appeared to be mainly due to segregating deleterious recessive alleles. The total fitness of selfed plants increased with decreasing population size, indicating some purging of deleterious alleles associated with declining population sizes. The magnitudes of GL due to fixed deleterious alleles in small populations and segregating deleterious alleles in large populations, however, were overall similar, suggesting that purging selection was an insignificant force when compared to genetic drift in determining the magnitude of GL in small natural populations in this species. The results of this study highlight the importance of population size in determining the dynamics of genetic loads of natural populations and are overall in line with a large body of theoretical work indicating that small populations may face higher extinction risks due to the fixation and accumulation of deleterious alleles of small effect.  相似文献   

5.

Genetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.

  相似文献   

6.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

7.
Inbreeding depression, which generally affects the fitness of small populations, may be diminished by purging recessive deleterious alleles when inbreeding persists over several generations. Evidence of purging remains rare, especially because of the difficulties of separating the effects of various factors affecting fitness in small populations. We compared the expression of life-history traits in inbred populations of guppy (Poecilia reticulata) with contemporary control populations over 10 generations in captivity. We estimated inbreeding depression as the difference between the two types of populations at each generation. After 10 generations, the inbreeding coefficient reached a maximum value of 0.56 and 0.16 in the inbred and control populations, respectively. Analysing changes in the life-history traits across generations showed that inbreeding depression in clutch size and offspring survival increased during the first four to six generations in the populations from the inbred treatment and subsequently decreased as expected if purging occurred. Inbreeding depression in two other traits was weaker but showed similar changes across generations. The loss of six populations in the inbred treatment indicates that removal of deleterious alleles also occurred by extinction of populations that presumably harboured high genetic load.  相似文献   

8.
Michaels HJ  Shi XJ  Mitchell RJ 《Oecologia》2008,154(4):651-661
We investigated the relationships among population size, offspring performance, and inbreeding depression (δ) in Lupinus perennis by examining the effect of population size category (large vs. small) on seed production and offspring performance for three pollination treatments (open pollination, hand crossing and hand selfing). In each of our four pairs of populations, one member of the pair was substantially larger than the other. We then grew seeds from this factorial design (2 sizes × 4 pairs × 3 pollination treatments) in the greenhouse to investigate whether population size affects offspring performance in a common environment, and how small size affects purging of the inbreeding load. Multiplicative performance across four early life-stage components (seed production, seedling emergence, seedling survival and seedling growth) of smaller populations was not significantly lower, although biomass of seedlings declined in smaller populations. Self-pollination reduced seed production, seedling emergence and seedling growth, reflecting substantial inbreeding depression (δ = 0.404 ± 0.043). Population size categories did not consistently differ in levels of inbreeding depression, suggesting that purging of genetic load in smaller populations has been limited, and that all populations still harbor inbreeding load. We also found a significant decrease in log performance with increases in the population inbreeding coefficient. These results indicate that even in seemingly large populations, lupines are susceptible to considerable fitness declines through both inbreeding load within populations, and drift load via genetic erosion and fixation of deleterious alleles between populations.  相似文献   

9.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

10.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

11.
Mildly deleterious mutations are thought to play a major role in the extinction of natural populations, especially those that are small, isolated, or inbred. Self-fertilization should reduce the effective size of populations and simultaneously reduce migration between populations. A history of self-fertilization should therefore cause a population to harbor a substantial "local drift load" caused by the fixation of mildly deleterious mutations. This hypothesis was tested in Leavenworthia alabamica, which contains large, self-incompatible populations and smaller self-compatible populations with adaptations for self-fertilization. The fitness of offspring from within- and between-population crosses was compared to quantify heterosis caused by the masking of deleterious alleles in the heterozygous state. Little heterosis was observed in crosses between five large, self-incompatible populations and two of the three small, self-fertilizing populations of L. alabamica. However, the most geographically isolated and genetically divergent self-fertilizing population (Tuscumbia) exhibited a 110.2% increase in germination and a 73.6% increase in fitness, which is consistent with a sizeable local drift load. The finding of substantial heterosis for fitness supports the idea that small effective size, reproductive isolation, and self-fertilization can make populations particularly vulnerable to mutation accumulation.  相似文献   

12.
? In small isolated populations, genetic drift is expected to increase chance fixation of partly recessive, mildly deleterious mutations, reducing mean fitness and inbreeding depression within populations and increasing heterosis in outcrosses between populations. ? We estimated relative effective sizes and migration among populations and compared mean fitness, heterosis, and inbreeding depression for eight large and eight small populations of a perennial plant on the basis of fitness of progeny produced by hand pollinations within and between populations. ? Migration was limited, and, consistent with expectations for drift, mean fitness was 68% lower in small populations; heterosis was significantly greater for small (mean?=?70%, SE?=?14) than for large populations (mean?=?7%, SE?=?27); and inbreeding depression was lower, although not significantly so, in small (mean?=?-0.29%, SE?=?28) than in large (mean?=?0.28%, SE?=?23) populations. ? Genetic drift promotes fixation of deleterious mutations in small populations, which could threaten their persistence. Limited migration will exacerbate drift, but data on migration and effective population sizes in natural populations are scarce. Theory incorporating realistic variation in population size and patterns of migration could better predict genetic threats to small population persistence.  相似文献   

13.
Although evidence of inbreeding depression in wild populations is well established, the impact of genetic purging in the wild remains controversial. The contrasting effects of inbreeding depression, fixation of deleterious alleles by genetic drift, and the purging of deleterious alleles via natural selection mean that predicting fitness outcomes in populations subjected to prolonged bottlenecks is not straightforward. We report results from a long‐term pedigree study of arguably the world's most inbred wild species of bird: the Chatham Island black robin Petroica traversi, in which conditions were ideal for purging to occur. Contrary to expectations, black robins showed a strong, negative relationship between inbreeding and juvenile survival, yielding lethal equivalents (2B) of 6.85. We also determined that the negative relationship between inbreeding and survival did not appear to be mediated by levels of ancestral inbreeding and may be attributed in part to unpurged lethal recessives. Although the black robin demographic history provided ideal conditions for genetic purging, our results show no clear evidence of purging in the major life‐history trait of juvenile survival. Our results also show no evidence of fixation of deleterious alleles in juvenile survival, but do confirm that continued high levels of contemporary inbreeding in a historically inbred population could lead to additional severe inbreeding depression.  相似文献   

14.
Fragmented populations may face high risk of extinction due to the deleterious consequences of increased inbreeding or of genetic drift in small and isolated populations. Theories on the mechanisms of inbreeding depression predict that the severity of inbreeding depression can eventually decrease in populations that persistently inbreed, and hence populations that are isolated through habitat fragmentation might experience a decrease in inbreeding depression over time. In this study, we tested this hypothesis using the patchily distributed, outcrossing annual plant, Clarkia concinna concinna (Onagraceae), which naturally experiences many fragmentation effects. We collected seeds from isolated and central subpopulations and created artificially inbred and outcrossed lines. Progeny from these crosses were planted into the field and greenhouse and assayed for fitness traits over the course of a growing season. Overall, inbreeding depression was substantial, ranging as high as 0.76 (for cumulative fitness in the field), and significant for plant height, fecundity, and above-ground biomass in all experiments. No inbreeding depression was detected for germination or survival rates in the greenhouse experiments, but in the field, survival was significantly depressed for inbred progeny. There was no evidence to support our hypothesis that increased inbreeding in isolated populations would lead to the purging of deleterious alleles and a decrease in the severity inbreeding depression. The most likely hypothesis to explain our results is that purging is not occurring more strongly in the isolated populations due to details of a number of genetic factors (e.g., selection against deleterious alleles is inconsistent or insufficient, or drift has caused fixation of deleterious alleles in these populations). This study supports the view that even when inbreeding depression is predicted to be less problematic, it may still be an important force influencing the fitness of populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Sexually selected traits are often condition‐dependent and are expected to be affected by genome‐wide distributed deleterious mutations and inbreeding. However, sexual selection is a powerful selective force that can counteract inbreeding through purging of deleterious mutations. Inbreeding and purging of the inbreeding load for sexually selected traits has rarely been studied across natural populations with different degrees of inbreeding. Here we investigate inbreeding effects (measured as marker‐based heterozygosity) on condition‐dependent sexually selected signalling trait and other morphological traits across islet‐ and mainland populations (n = 15) of an endemic lizard species (Podarcis gaigeae). Our data suggest inbreeding depression on a condition‐dependent sexually selected signalling character among mainland subpopulations with low or intermediate levels of inbreeding, but no sign of inbreeding depression among small and isolated islet populations despite their higher overall inbreeding levels. In contrast, there was no such pattern among ten other morphological traits which are primarily naturally selected and presumably not involved in sexual signalling. These results are in line with purging of recessive deleterious alleles, or purging in combination with stochastic fixation of alleles by genetic drift, for a sexual signalling character in the islet environment, which is characterized by low population sizes and strong sexual selection. Higher clutch sizes in islet populations also raise interesting questions regarding the possibility of antagonistic pleiotropy. Purging and other non‐exclusive explanations of our results are discussed.  相似文献   

16.
The harmful effects of inbreeding can be reduced if deleterious recessive alleles were removed (purged) by selection against homozygotes in earlier generations. If only a few generations are involved, purging is due almost entirely to recessive alleles that reduce fitness to near zero. In this case the amount of purging and allele frequency change can be inferred approximately from pedigree data alone and are independent of the allele frequency. We examined pedigrees of 59,778 U.S. Jersey cows. Most of the pedigrees were for six generations, but a few went back slightly farther. Assuming recessive homozygotes have fitness 0, the reduction of total genetic load due to purging is estimated at 17%, but most of this is not expressed, being concealed by dominant alleles. Considering those alleles that are currently expressed due to inbreeding, the estimated amount of purging is such as to reduce the expressed load (inbreeding depression) in the current generation by 12.6%. That the reduction is not greater is due mainly to (1) generally low inbreeding levels because breeders in the past have tended to avoid consanguineous matings, and (2) there is essentially no information more than six generations back. The methods used here should be applicable to other populations for which there is pedigree information.  相似文献   

17.
Willi Y  Van Buskirk J  Fischer M 《Genetics》2005,169(4):2255-2265
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic richness as a proxy for long-term population size, which was positively correlated with current population size. Crosses between plants of smaller populations were less likely to be compatible. Inbreeding load, assessed as the slope of the relationship between offspring performance and parental kinship coefficients, was not related to population size, suggesting that deleterious mutations had not been purged from small populations. Offspring from smaller populations were on average more inbred, so inbreeding depression in clonal fitness was higher in small populations. We estimated variation in drift load from the mean fitness of outbred offspring and found enhanced drift load affecting female fertility within small populations. We conclude that self-incompatibility systems do not necessarily prevent small populations from suffering from inbreeding depression and drift load and may exacerbate the challenge of finding suitable mates.  相似文献   

18.
Genetic drift in small populations can increase frequency of deleterious recessives and consequently lead to inbreeding depression and population extinction. On the other hand, as homozygosity at deleterious recessives increases, they should be purged from populations more effectively by selection. Sexual selection has been postulated to strengthen selection against deleterious mutations, and should thus decrease extinction rate and intensify purging of inbreeding depression. We tested these predictions in the bulb mite Rhizoglyphus robini. We created 100 replicate lines of small populations (five males and five females) and in half of them experimentally removed sexual selection by enforcing monogamy. The lines were propagated for eight generations and then assayed for purging of inbreeding depression. We found that proportion of lines which went extinct was lower with sexual selection than without. We also found evidence for purging of inbreeding depression in the lines with sexual selection, but not in lines without sexual selection. Our results suggest that purging of inbreeding depression was more effective against mutations with relatively large deleterious effects. Thus, although our data clearly indicate a positive impact of sexual selection on short‐term survival of bottlenecked populations, long‐term consequences are less clear as they may be negatively impacted by accumulation of deleterious mutations of small effect.  相似文献   

19.
Inbreeding depression threatens the survival of small populations of both captive and wild outbreeding species. In order to fully understand this threat, it is necessary to investigate what role purging plays in reducing inbreeding depression. Ballou (1997) undertook such an investigation on 25 mammalian populations, using an ancestral inbreeding regression model to detect purging. He concluded that there was a small but highly significant trend of purging on neonatal survival across the populations. We tested the performance of the regression model that Ballou used to detect purging on independently simulated data. We found that the model has low statistical power when inbreeding depression is caused by the build-up of mildly deleterious alleles. It is therefore possible that Ballou's study may have underestimated the effects of ancestral inbreeding on the purging of inbreeding depression in captive populations if their inbreeding depression was caused mainly by mildly deleterious mutations. We also developed an alternative regression model to Ballou's, which showed an improvement in the detection of purging of mildly deleterious alleles but performed less well if deleterious alleles were of a large effect.  相似文献   

20.
The relative effects of purging of the genetic load versus thefixation of deleterious alleles, under inbreeding, will influencea population's probability of extinction. The relative contributionof these two phenomena is expected to depend upon the rate ofinbreeding. A further complication is due to the fact that a purgingof the genetic load in one environment does not necessarily implya purging of the genetic load in other environments. To addressthese two issues, we compare fitness and genetic load in populationsexperiencing similar levels of inbreeding, but occurring as either ashort-term bottleneck or as a consequence of long-term reducedpopulation size, over a range of environments. Inbred populationshave consistently lower fitness than outbred populations acrossall environments tested. However, the bottlenecked populationssuffer less inbreeding depression for a given level of inbreeding,whether or not challenged by novel environments, than populationskept at a constant small size. The results of this study demonstratethat populations initiated from a small number of founders are ableto recover fitness and survive novel environmental challenges,provided that habitat is available for rapid population growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号