首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Microzooplankton grazing can have significant impacts on the distribution and abundance of phytoplankton, thereby influencing the frequency and duration of algae blooms. Observations of high ciliate abundances in the Suwannee River estuary, Florida, suggest a significant potential for top-down pressure on the phytoplankton community by microzooplankton. We examined the composition of the microzooplankton and determined grazing mortality losses for phytoplankton within the Suwannee River estuary from 2001 to 2002. Our results indicated grazing mortality rates of 1.4 d−1, equivalent to a loss of up to 76% of phytoplankton standing crop and up to 83% of total daily primary production. The microzooplankton community was primarily composed of ciliates, dinoflagellates, and copepod nauplii. The densities of ciliates in the estuary were comparable to densities reported in highly eutrophic ecosystems (9,400–72,800 ciliates l−1). Grazing pressure on small phytoplankton may be further enhanced because ciliates and small dinoflagellates have growth rates similar to those of phytoplankton, and therefore can keep up with surges in abundance. Handling editor: Judit Padisak  相似文献   

2.
三门湾浮游动物的季节变动及微型浮游动物摄食影响   总被引:6,自引:0,他引:6  
2002年8月、11月、2003年2月和5月,在三门湾进行了4个航次生物、化学和水文等专业综合调查。根据采集的浮游动物样品的分析鉴定及海上现场实验结果,对浮游动物的群落组成、生物量、丰度、多样性指数的分布和季节变动及其浮游动物对浮游植物的摄食影响进行研究。结果表明,三门湾浮游动物有67属,89种,16类浮游幼体,主要可划分为4个生态类群:以近岸低盐类群为主,其优势种为中华哲水蚤Calanus sinicus、真刺唇角水蚤Labidocera etwhaeta、捷氏歪水蚤Tortanus derjugini、太平洋纺锤水蚤Acartiapacifica、中华假磷虾Pseudeuphausia sinica和百陶箭虫Sagitta bedoti等。半咸水河口类群、暖水性外海类群和广布种相对较少。浮游动物生物量和丰度的平面分布趋势除了夏季有所差异外,其它季节基本一致。2月份和5月份,浮游动物生物量和丰度,从湾顶向湾口呈逐渐增加趋势;8月份,湾口区生物量最高,而丰度高值区出现在湾顶部;11月份,生物量和丰度的平面分布相对均匀。浮游动物种类多样性指数有明显的季节变化,其动态变化与浮游动物种数和丰度的变化一致。微型浮游动物对浮游植物存在摄食压力,且有季节变化,摄食率的变化在0.18.0.68d^-1,微型浮游动物的摄食率低于相同季节的浮游植物生长率。微型浮游动物对浮游植物摄食压力的变化范围为16.1%-49.1%d^-1,对初级生产力摄食压力的变化在58.3%-83.6%d^-1。11月份,微型浮游动物对浮游植物和初级生产力的摄食压力均出现最高值。  相似文献   

3.
Liu Z S  Wang C S  Zhang Z N  Liu C G  Yang G M 《农业工程》2006,26(12):3931-3940
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d?1 to 0.89 d?1, whereas grazing rate of microzooplankton ranged between 0.18 d?1 and 0.68 d?1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d?1 to 49.1% d?1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d?1 to 83.6% d?1 in different seasons.  相似文献   

4.
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d−1 to 0.89 d−1, whereas grazing rate of microzooplankton ranged between 0.18 d−1 and 0.68 d−1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d−1 to 49.1% d−1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d−1 to 83.6% d−1 in different seasons.  相似文献   

5.
A monitoring programme for microzooplankton was started at the long-term sampling station “Kabeltonne” at Helgoland Roads (54°11.3′N; 7°54.0′E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.  相似文献   

6.
The species composition,biomass,abundance,and species diversity of zooplankton were determined for samples collected from August 2002 to May 2003 from 14 stations in Yueqing Bay,China.Phytoplankton growth rate and microzooplankton grazing rate were obtained by using the dilution method developed by Landry and Hassett.The spatial and temporal variations of zooplankton and its relationship with environmental factors were also analyzed.The results showed that the zooplankton in the Yueqing Bay could be divided into four ecotypes,namely coastal low saline species,estuary brackish water species,offshore warm water species,and eurytopic species.A total of 75 species of zooplankton belonging to 56 genera and 17 groups of pelagic larva were identified in the Yueqing Bay.The coastal low saline species was the dominant ecotype in the study area,and the dominant species were Labidocera euchaeta,Acartia pacifica,Acrocalanus gibber,Pseudeuphausia sinica,and Sagitta bedoti among others.There was considerable seasonal variation in zooplankton biomass and abundance in the surveyed areas.The peak biomass appeared in August,descending in November and in May,and the lowest biomass appeared in February.Similarly,the highest abundance of zooplankton was observed in August,with the abundance descending in the following months:May,November,and February.There were similar horizontal distribution patterns for the biomass and the abundance of zooplankton.They both increased from the upper to the lower bay in February and May,but decreased from the upper to the lower bay in August.Biomass and abundance were evenly distributed in the Yueqing Bay in November.Moreover,there was marked seasonal variation in the species diversity of zooplankton,which conformed to the abundance of zooplankton.Results of the dilution experiments indicated that there was grazing pressure of microzooplankton on phytoplankton in the Yueqing Bay throughout the year though the rate of microzooplankton grazing on phytoplankton varied seasonally.Phytoplanktons were growing at 0.26-2.07/d and grazed by microzooplankton at a rate of 0.15--0.48/d in different seasons.  相似文献   

7.
This study documents the monsoonal and lunar effects on species composition and abundance of microzooplankton in a tropical estuary. We investigated microzooplankton abundance in relation to the various environmental and biotic parameters, sampled in the Matang mangrove (Malaysia) from April 2013 to February 2014. A total of 39 microzooplankton taxa comprising four major groups, i.e. loricate ciliates (37.72%), aloricate ciliates (29.46%), dinoflagellates (24.33%) and meroplanktonic nauplii (8.49%) were identified. The loricate ciliates were the most diverse group with 31 taxa recorded. Four major species of loricate ciliates were identified, i.e. Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana and Tintinnidium primitivum, while Strombidiidae and Strobilidiidae dominated the aloricate ciliates. Although small loricate ciliates were ubiquitous, redundancy analysis shows marked shifts in microzooplankton community structure, from one that was dominated by loricate ciliates during the drier SW monsoon, to aloricate ciliates at the onset of the wet NE monsoon, and then to dinoflagellates towards the end of the drier NE monsoon period. These shifts were associated with rainfall, dissolved inorganic nutrients, salinity, temperature and microbial food abundance. There was no clear lunar effect on abundance of microzooplankton except for Favella ehrenbergii and copepod nauplii, which were more abundant during neap than spring tides.  相似文献   

8.
Grazing of dominant zooplankton copepods (Calanoides acutus, and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for <1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study; even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development.  相似文献   

9.
Davison  I. R.  Collén  J.  & Fegley  J.C. 《Journal of phycology》2000,36(S3):16-16
There is a growing understanding that phagotrophic ciliates are often important members of aquatic communities in terms of their trophic role and mobilization of small cell production to higher consumers. As formidable consumers of small phytoplankton species they are likely to be also important in determining the community composition of the pico- and nanophytoplankton assemblages. Dilution method experiments were conducted during the winter and summer in the South Slough, an arm of the Coos Bay on the southern Oregon coast, to assess the impact of ciliate grazing on two size fractions of chlorophyll (0.2 to 5 mm and> 5 mm) and on the growth and abundance of specific phytoplankton groups, particularly cryptophytes and Synechococcus sp. The premise of the dilution technique is that grazers are diluted with their food and the observed rate of change in chlorophyll or phytoplankton abundance is linearly related to the dilution factor. Results from previous studies using the dilution technique have been given in terms of the grazing impact of microzooplankton on total chlorophyll. The findings of the research presented using a more rigorous application of the dilution method suggest that ciliates are differential in their grazing of phytoplankton, targeting small phytoplankton biomass and preying selectively on components of the assemblage that constitute this biomass.  相似文献   

10.
The rapid melting of glaciers as well as the loss of sea ice in the Amundsen Sea makes it an ideal environmental setting for the investigation of the impacts of climate change in the Antarctic on the distribution and production of mesozooplankton. We examined the latitudinal distribution of mesozooplankton and their grazing impacts on phytoplankton in the Amundsen Sea during the early austral summer from December 27, 2010 to January 13, 2011. Mesozooplankton followed a latitudinal distribution in relation to hydrographic and environmental features, with copepods dominating in the oceanic area and euphausiids dominating in the polynya. Greater Euphausia crystallorophias biomass in the polynya was associated with lower salinity and higher food concentration (chlorophyll a, choanoflagellates, and heterotrophic dinoflagellates). The grazing impact of three copepods (Rhincalanus gigas, Calanoides acutus, and Metridia gerlachei) on phytoplankton was low, with the consumption of 3 % of phytoplankton standing stock and about 4 % of daily primary production. Estimated daily carbon rations for each of the three copepods were also relatively low (<10 %), barely enough to cover metabolic demands. This suggests that copepods may rely on food other than phytoplankton and that much of the primary production is channeled through microzooplankton. Daily carbon rations for E. crystallorophias were high (up to 49 %) with the grazing impact accounting for 17 % of the phytoplankton biomass and 84 % of primary production. The presence of E. crystallorophias appears to be a critical factor regulating phytoplankton blooms and determining the fate of fixed carbon in the coastal polynyas of the Amundsen Sea.  相似文献   

11.
孙军  田伟 《应用生态学报》2011,22(1):235-242
于2009年4月在长江口及其邻近水域采集浮游植物水样,用Utermöhl方法进行初步分析,同时进行叶绿素a粒级分离研究,并采用典范对应分析讨论了浮游植物优势物种与各环境因子的关系.本次调查共鉴定浮游植物3门46属64种(不包括未定名种),其中硅藻33属45种(不包括未定名种),甲藻12属18种(不包括未定名种),定鞭藻1属1种,硅藻在细胞丰度和物种丰富度上占有优势.浮游植物的生态类型主要以温带近岸种为主,优势物种为多尼骨条藻(Skeletonema dohrnii)、具槽帕拉藻(Paralia sulcata)、菱形海线藻(Thalassionema nitzschioides)、尖刺伪菱形藻(Pseudo-nitzschia pungens)、颗粒直链藻狭型变种(Melosira granulata var angustissima)、柔弱伪菱形藻(Pseudo-nitzschia delicatissima)和柔弱几内亚藻(Guinardia delicatula),同时调查区也出现少数的半咸水种和大洋种.调查区浮游植物细胞丰度介于0.3~13447.7 cells·ml-1,平均为1142.385 cells·ml-1,硅藻的细胞丰度显著高于甲藻.细胞丰度高值区位于调查区的中部偏北区域,以多尼骨条藻为主.垂向上在表层出现最大值,随着深度的增加丰度降低.调查区的Shannon多样性指数和Pielou均匀度指数的平面分布基本一致,并且与细胞丰度呈镶嵌分布,即在细胞丰度高的调查区中北部较低.表层叶绿素a浓度介于0.34~29 g·L-1,平均为3.30 g·L-1.叶绿素a的高值区主要位于调查区的中部偏北区域,其分布趋势与浮游植物和硅藻细胞丰度的分布基本一致.主要粒级组分为小型浮游植物(microphytoplankton),而其他靠近外海一侧的站位则以微型浮游植物(2~20 μm, nanophytoplankton)和超微型浮游植物(<2 μm, picophytoplankton)为主.与环境因子的典范对应分析(CCA)表明,春季长江口影响最优势物种多尼骨条藻分布的主要因素为硝酸盐、pH和微型浮游动物,而包括甲藻在内的其他各物种则主要受盐度、磷酸盐和硅酸盐影响.本次调查浮游植物定量研究方法与以往不同,在长江口今后需要加强骨条藻的个体生态学研究.  相似文献   

12.
春季赤潮频发期东海微型浮游动物摄食研究   总被引:50,自引:4,他引:46  
2002年4~5月在东海长江口及其邻近水域的8、11、14、23和28号5个典型站位采样。用现场稀释法对春季东海水域浮游植物的生长率和微型浮游动物对浮游植物的摄食压力等方面进行了研究.结果表明,微型浮游动物的摄食行为在东海赤潮过程起到关键作用.各站位微型浮游动物主要以急游虫、红色中缢虫和夜光藻为主,在种类上砂壳纤毛虫是主要的类群.微型浮游动物的摄食速率范围在0.28~1.13d-1,对浮游植物现存量的摄食压力范围在35.14%~811.69%。对浮游植物潜在初级生产力的摄食压力范围在74.04%~203.25%,对浮游植物碳的摄食率范围在9.58~97.91μg·L-1·d-1,靠近岸边的站位,微型浮游动物的摄食速率、对浮游植物现存量的摄食压力和对浮游植物碳的摄食率相对较高。而远离岸边的站位对浮游植物潜在初级生产力的摄食压力却较高.与世界其它海区比较此水域微型浮游动物摄食压力处于较高水平.急游虫是控制东海主要赤潮原因生物具齿原甲藻生长的关键种类.  相似文献   

13.
大亚湾澳头水域浮游植物群落结构及周年数量动态   总被引:16,自引:0,他引:16  
对1997年至1998年广东省大亚湾澳头水域的浮游植物群落进行调查和分析。结果发现浮游植物65属198种;硅藻在种类组成和数量上都比甲藻占有优势,存在春季和秋季高峰,主要优势类群依次是角毛藻、骨条藻、拟菱形藻等;甲藻只存在春季高峰,代表种类有裸甲藻、原甲藻等。主要优势种类的生长与调查水域的盐度没有明显关系,但全年水温的季节性变化对优势种类的消长影响显著。Simpson多样性指数、Shannon-Weaver多样性指数、均匀度的年平均值分别是0.611、2.107、0.557,多样性指数没有明显的季节变化规律和水平分布规律。    相似文献   

14.
《Harmful algae》2009,8(1):158-166
Links between eutrophication, plankton community structure, microzooplankton grazing and dinoflagellate abundance were investigated in two tributaries of the Chesapeake Bay, the Choptank and Patuxent Rivers (MD, USA). Sampling and experiments were conducted during the spring of consecutive dry (below average freshwater flow) and wet (above average freshwater flow) years. During the wet year (2003), dissolved inorganic nitrogen, phytoplankton, and copepod biomass, but not microzooplankton abundance, were greater than in the dry year. In 2003, but not 2002, small cell size photosynthetic dinoflagellates were abundant and blooms occurred in both rivers. Average potential microzooplankton grazing pressure on small dinoflagellates was spatially and temporally variable, but was not significantly different between years. Our data suggest that the variability in microzooplankton grazing pressure provided “windows of opportunity” for net growth of dinoflagellates in response to nutrient loading. The lack of net population growth of micrograzers in response to increases in dinoflagellate prey allowed dinoflagellate blooms to reach relatively high densities, however grazing also appeared to be important in limitation or demise of some blooms. We hypothesize that uncoupling of micrograzer–prey dynamics was partly due to strong top-down control by copepods of microzooplankton in the proportionately more eutrophic year, and perhaps also due to inhibition of microzooplankton grazing/growth once dinoflagellate densities are high.  相似文献   

15.
The influence of mixing frequency and depth on phytoplankton functional group composition (mobile versus immobile species) was studied by enclosure experiments in a shallow, stratified lake. Mixing events were artificially induced at intervals from 2–12 d. The mixing depth was increased from the natural level (4 m) to 6 and 9 m. The mobile phytoplankton in the experiments consisted of cyanobacteria and flagellates. Among the latter, large and rapid swimming species were represented by dinoflagellates. An increase of the relative abundance of gas vacuolated cyanobacteria occurred with increasing frequency of mixing. Additionally Reynolds' hypothesis predicting the occurrence of certain mobile phytoplankton genera in response to the mixing regime could be confirmed for the condition when mixing depth exceeds the euphoric depth.  相似文献   

16.
The species composition, biomass, abundance, and species diversity of zooplankton were determined for samples collected from August 2002 to May 2003 from 14 stations in Yueqing Bay, China. Phytoplankton growth rate and microzooplankton grazing rate were obtained by using the dilution method developed by Landry and Hassett. The spatial and temporal variations of zooplankton and its relationship with environmental factors were also analyzed. The results showed that the zooplankton in the Yueqing Bay could be divided into four ecotypes, namely coastal low saline species, estuary brackish water species, offshore warm water species, and eurytopic species. A total of 75 species of zooplankton belonging to 56 genera and 17 groups of pelagic larva were identified in the Yueqing Bay. The coastal low saline species was the dominant ecotype in the study area, and the dominant species were Labidocera euchaeta, Acartia pacifica, Acrocalanus gibber, Pseudeuphausia sinica, and Sagitta bedoti among others. There was considerable seasonal variation in zooplankton biomass and abundance in the surveyed areas. The peak biomass appeared in August, descending in November and in May, and the lowest biomass appeared in February. Similarly, the highest abundance of zooplankton was observed in August, with the abundance descending in the following months: May, November, and February. There were similar horizontal distribution patterns for the biomass and the abundance of zooplankton. They both increased from the upper to the lower bay in February and May, but decreased from the upper to the lower bay in August. Biomass and abundance were evenly distributed in the Yueqing Bay in November. Moreover, there was marked seasonal variation in the species diversity of zooplankton, which conformed to the abundance of zooplankton. Results of the dilution experiments indicated that there was grazing pressure of microzooplankton on phytoplankton in the Yueqing Bay throughout the year though the rate of microzooplankton grazing on phytoplankton varied seasonally. Phytoplanktons were growing at 0.26–2.07/d and grazed by microzooplankton at a rate of 0.15–0.48/d in different seasons. __________ Translated from Acta Ecologica Sinica, 2005, 25(8): 1853–1862 [译自: 生态学报, 2005, 25(8): 1853–1862]  相似文献   

17.
We hypothesized that the trophic level of marine copepods should depend on the composition of the protist community. To test this hypothesis, we manipulated the phytoplankton composition in mesocosms and measured grazing rates of copepods and mesozooplankton in those mesocosms. Twelve mesocosms with Northeast Atlantic phytoplankton were fertilised with different Si:N ratios from 0:1 to 1:1. After 1 week, ten of the mesocosms were filled with natural densities of mesozooplankton, mainly calanoid copepods, while two remained as mesozooplankton-free controls. Both before and after the addition of copepods there was a positive correlation of diatom dominance with Si:N ratios. During the second phase of the experiment, copepod and microzooplankton grazing rates on different phytoplankton species were assessed by a modification of the Landry-Hassett dilution technique, where the bottles containing the different dilution treatments were replaced by dialysis bags incubated in situ. The results indicated no overlap in the food spectrum of microzooplankton (mainly ciliates) and copepods. Ciliates fed on nanoplankton, while copepods fed on large or chain-forming diatoms, naked dinoflagellates, and ciliates. The calculated trophic level of copepods showed a significantly negative but weak correlation with Si:N ratios. The strength of this response was strongly dependent on the trophic levels assumed for ciliates and mixotrophic dinoflagellates.  相似文献   

18.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

19.
There is a growing understanding that phagotrophic ciliates are often important members of aquatic communities in terms of their trophic role and mobilization of small cell production to higher consumers. As formidable consumers of small phytoplankton species they are likely to be also important in determining the community composition of the pico‐ and nanophytoplankton assemblages. Dilution method experiments were conducted during the winter and summer in the South Slough, an arm of the Coos Bay on the southern Oregon coast, to assess the impact of ciliate grazing on two size fractions of chlorophyll (0.2 to 5 mm and> 5 mm) and on the growth and abundance of specific phytoplankton groups, particularly cryptophytes and Synechococcus sp. The premise of the dilution technique is that grazers are diluted with their food and the observed rate of change in chlorophyll or phytoplankton abundance is linearly related to the dilution factor. Results from previous studies using the dilution technique have been given in terms of the grazing impact of microzooplankton on total chlorophyll. The findings of the research presented using a more rigorous application of the dilution method suggest that ciliates are differential in their grazing of phytoplankton, targeting small phytoplankton biomass and preying selectively on components of the assemblage that constitute this biomass.  相似文献   

20.
Seasonal and vertical distribution of tintinnids, non-loricate ciliates and micrometazoa were studied in Kaštela Bay (central Adriatic Sea) throughout 1995. The species composition of tintinnids and copepods were studied as well. This is the first estimation of non-loricate ciliate biomass in the coastal area of the central Adriatic. Non-loricate ciliates were quantitatively the best represented ciliated protozoa, whereas nauplii were the most numerous micrometazoan organisms. Temperature affected the distribution of most micrometazoan components of the zooplankton and that of non-loricate ciliates. The temperature-dependent presence of individual size categories of non-loricate ciliates was also established. Apart from the interaction between microzooplankton groups, the influence of biotic factors, such as phytoplankton, bacteria, non-pigmented nanoflagellates (NNF) and mesozooplankton, was also discussed. The abundance of ciliates was controlled by both food supply (phytoplankton and NNF) and micrometazoan grazing. The results point to very complex trophic relationships within the planktonic community, suggesting that microzooplankton could be an important link between the microbial food web and higher trophic levels. Received in revised form: 8 November 2000 Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号