首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu TK  Zhang YB  Liu Y  Sun F  Gui JF 《Journal of virology》2011,85(23):12769-12780
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) inhibits protein synthesis by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). In fish species, in addition to PKR, there exists a PKR-like protein kinase containing Z-DNA binding domains (PKZ). However, the antiviral role of fish PKZ and the functional relationship between fish PKZ and PKR remain unknown. Here we confirmed the coexpression of fish PKZ and PKR proteins in Carassius auratus blastula embryonic (CAB) cells and identified them as two typical interferon (IFN)-inducible eIF2α kinases, both of which displayed an ability to inhibit virus replication. Strikingly, fish IFN or all kinds of IFN stimuli activated PKZ and PKR to phosphorylated eIF2α. Overexpression of both fish kinases together conferred much more significant inhibition of virus replication than overexpression of either protein, whereas morpholino knockdown of both made fish cells more vulnerable to virus infection than knockdown of either. The antiviral ability of fish PKZ was weaker than fish PKR, which correlated with its lower ability to phosphorylate eIF2α than PKR. Moreover, the independent association of fish PKZ or PKR reveals that each of them formed homodimers and that fish PKZ phosphorylated eIF2α independently on fish PKR and vice versa. These results suggest that fish PKZ and PKR play a nonredundant but cooperative role in IFN antiviral response.  相似文献   

2.
3.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

4.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

5.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

6.
Vaccinia virus (VV) mutants lacking the double-stranded RNA (dsRNA)-binding E3L protein (ΔE3L mutant VV) show restricted replication in most cell types, as dsRNA produced by VV activates protein kinase R (PKR), leading to eIF2α phosphorylation and impaired translation initiation. Here we show that cells infected with ΔE3L mutant VV assemble cytoplasmic granular structures which surround the VV replication factories at an early stage of the nonproductive infection. These structures contain the stress granule-associated proteins G3BP, TIA-1, and USP10, as well as poly(A)-containing RNA. These structures lack large ribosomal subunit proteins, suggesting that they are translationally inactive. Formation of these punctate structures correlates with restricted replication, as they occur in >80% of cells infected with ΔE3L mutant VV but in only 10% of cells infected with wild-type VV. We therefore refer to these structures as antiviral granules (AVGs). Formation of AVGs requires PKR and phosphorylated eIF2α, as mouse embryonic fibroblasts (MEFs) lacking PKR displayed reduced granule formation and MEFs lacking phosphorylatable eIF2α showed no granule formation. In both cases, these decreased levels of AVG formation correlated with increased ΔE3L mutant VV replication. Surprisingly, MEFs lacking the AVG component protein TIA-1 supported increased replication of ΔE3L mutant VV, despite increased eIF2α phosphorylation and the assembly of AVGs that lacked TIA-1. These data indicate that the effective PKR-mediated restriction of ΔE3L mutant VV replication requires AVG formation subsequent to eIF2α phosphorylation. This is a novel finding that supports the hypothesis that the formation of subcellular protein aggregates is an important component of the successful cellular antiviral response.  相似文献   

7.
Indomethacin, a cyclooxygenase‐1 and ‐2 inhibitor widely used in the clinic for its potent anti‐inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double‐stranded RNA (dsRNA)‐dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus. Indomethacin was found to activate PKR in an interferon‐ and dsRNA‐independent manner, causing rapid (< 5 min) phosphorylation of eukaryotic initiation factor‐2 α‐subunit (eIF2α). These events resulted in shutting off viral protein translation and blocking viral replication (IC50 = 2 μM) while protecting host cells from virus‐induced damage. Indomethacin did not affect eIF2α kinases PKR‐like endoplasmic reticulum‐resident protein kinase (PERK) and general control non‐derepressible‐2 (GCN2) kinase, and was unable to trigger eIF2α phosphorylation in the presence of PKR inhibitor 2‐aminopurine. In addition, small‐interfering RNA‐mediated PKR gene silencing dampened the antiviral effect in indomethacin‐treated cells. The results identify PKR as a critical target for the antiviral activity of indomethacin and indicate that eIF2α phosphorylation could be a key element in the broad spectrum antiviral activity of the drug.  相似文献   

8.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

9.
The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha) is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.  相似文献   

10.
The RNA-editing enzyme ADAR1 is a double-stranded RNA (dsRNA) binding protein that modifies cellular and viral RNA sequences by adenosine deamination. ADAR1 has been demonstrated to play important roles in embryonic erythropoiesis, viral response, and RNA interference. In human hepatitis virus infection, ADAR1 has been shown to target viral RNA and to suppress viral replication through dsRNA editing. It is not clear whether this antiviral effect of ADAR1 is a common mechanism in response to viral infection. Here, we report a proviral effect of ADAR1 that enhances replication of vesicular stomatitis virus (VSV) through a mechanism independent of dsRNA editing. We demonstrate that ADAR1 interacts with dsRNA-activated protein kinase PKR, inhibits its kinase activity, and suppresses the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation. Consistent with the inhibitory effect on PKR activation, ADAR1 increases VSV infection in PKR+/+ mouse embryonic fibroblasts; however, no significant effect was found in PKR-/- cells. This proviral effect of ADAR1 requires the N-terminal domains but does not require the deaminase domain. These findings reveal a novel mechanism of ADAR1 that increases host susceptibility to viral infection by inhibiting PKR activation.  相似文献   

11.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

12.
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.  相似文献   

13.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

14.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

15.
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.  相似文献   

16.
Interferon (IFN)-inducible, double-stranded (dsRNA)-activated protein kinase (PKR) is a key mediator of the antiviral and antiproliferative effects of IFN. PKR is present within cells in a latent state. In response to binding dsRNA, the enzyme becomes activated, causing autophosphorylation and an increase in specific kinase activity. In order to study PKR and its inhibitors, a large amount of the enzyme in its latent, unphosphorylated state is required. When PKR is fused to glutathione S-transferase (GST-PKR) and the fusion protein is expressed in Escherichia coli, the PKR obtained is fully activated by autophosphorylation. Therefore, we have developed an expression plasmid in which both GST-PKR and bacteriophage lambda protein phosphatase (lambda-PPase) genes were placed downstream of a T7 promoter. After induction of expression, unphosphorylated GST-PKR was obtained in good yield, and purified to near homogeneity. The purified enzyme has dsRNA-dependent activation and phosphorylates the translation initiation factor eIF2 alpha. Using the recombinant protein, we analyzed the inhibition mechanisms of two viral inhibitors, vaccinia virus K3L protein and adenovirus virus-associated RNA I (VAI RNA). K3L inhibited both autophosphorylation of PKR and phosphorylation of eIF2 alpha, whereas VAI RNA inhibited only autophosphorylation. The separation of autophosphorylation and catalytic activity shows that the recombinant PKR is useful in analyzing the functions of PKR, its inhibitors, and its regulatory molecules. The coexpression system of protein kinase with lambda-PPase described here will be applicable to obtaining unphosphorylated and unactivated forms of other protein kinases.  相似文献   

17.
Wu S  Kaufman RJ 《Biochemistry》2004,43(34):11027-11034
The double-stranded (ds) RNA-activated protein kinase PKR phosphorylates the alpha-subunit of the eukaryotic initiation factor 2 (eIF2alpha) and inhibits translation initiation. PKR contains two dsRNA binding domains in its amino terminus and a kinase domain in its carboxy terminus. dsRNA binding activates PKR from a latent state by inducing dimerization and trans-autophosphorylation. Recent studies show that PKR is also activated by caspase cleavage to remove the inhibitory dsRNA binding domains. In this report, we show that the isolated kinase domain of PKR is a constitutively active monomeric kinase that has an activity similar to that of wild-type PKR. We used a solid-phase kinase assay system to show that PKR does not transfer its own phosphate to either PKR or eIF2alpha but rather uses the gamma-phosphate from ATP. In addition, the isolated autophosphorylated kinase domain of PKR phosphorylated intact monomeric PKR in trans in a reaction that did not require dsRNA binding. However, this trans-phosphorylation did not occur at the critical Thr446/451 sites and was not sufficient to induce dimerization and/or activation of PKR. The results show that dsRNA binding domains of PKR are not only required for dimerization of PKR but also required for phosphorylation of Thr446/451 sites of PKR. The results imply that even though the isolated kinase domain of PKR phosphorylates intact PKR and eIF2alpha, it is unable to activate PKR.  相似文献   

18.
We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.  相似文献   

19.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

20.
Ben-Asouli Y  Banai Y  Pel-Or Y  Shir A  Kaempfer R 《Cell》2002,108(2):221-232
PKR, an interferon (IFN)-inducible protein kinase activated by double-stranded RNA, inhibits translation by phosphorylating the initiation factor eIF2alpha chain. We show that human IFN-gamma mRNA uses local activation of PKR in the cell to control its own translation yield. IFN-gamma mRNA activates PKR through a pseudoknot in its 5' untranslated region. Mutations that impair pseudoknot stability reduce the ability to activate PKR and strongly increase the translation efficiency of IFN-gamma mRNA. Nonphosphorylatable mutant eIF2alpha, knockout of PKR and PKR inhibitors 2-aminopurine, transdominant-negative PKR, or vaccinia E3L correspondingly enhances translation of IFN-gamma mRNA. The potential to form the pseudoknot is phylogenetically conserved. We propose that the RNA pseudoknot acts to adjust translation of IFN-gamma mRNA to the PKR level expressed in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号