首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的:探讨长程颅内电极监测及电刺激方法,在感觉运动区皮质发育不良的难治性癫痫外科手术评估中的意义。方法:筛选MRI提示的皮质发育不良区域与重要功能区-感觉运动区位置关系密切的11例难治性癫痫患者,且头皮长程视频脑电监测及PET检查也初步提示癫痫发作与皮质发育不良所在脑区有关,在可疑脑区放置颅内电极,然后进行颅内电极长程视频脑电监测及电刺激检测,对癫痫起源位置及功能区定位,明确癫痫发作起源区域与感觉运动功能区的解剖学关系,在定位结果指导下进行切除术。结果:11例中3例位于左侧半球,8例位于右侧半球,11例感觉运动功能区皮质分布均存在不同程度变异,7例癫痫发作起源区域与感觉运动功能区一定范围重叠,其中5例与感觉区重叠,该5例切除了起源区域与发作有关的部分感觉区,2例部分致痫灶与运动区重叠,该2例仅切除了除与发作有关的运动区以外的癫痫起源区域,4例癫痫发作起源区域与感觉运动功能区相对独立,该4例完全切除癫痫发作起源区域;手术后6例患者发作消失,2例患者发作频率减少90%以上,1例癫痫发作控制无效,2例患者发生部分感觉缺失,但对生活无明显影响。结论:在皮质发育不良的癫痫患者中,有较高比例的病人伴有功能区皮层分布的变异,长程颅内电极监测及电刺激能够实现癫痫起源区域及功能区精确定位,明确功能区变异情况,对于指导病灶切除,避免损伤功能区皮质,减少术后并发症具有重要意义。  相似文献   

2.
目的:研究长程颅内电极埋藏监测致痫灶治疗难治性癫痫的手术护理模式 方法:回顾性总结120例颅内电极埋藏监测致痫灶治疗难治性癫痫的手术配合过程.结果:认为手术室护士全面了解手术过程,将患者存在的心理危机迅速识别出来,手术期间实施有效的心理护理和安全防护,熟练掌握手术步骤,熟悉各种精密仪器的作用原理和使用,是手术顺利进行的重要保证.结论:在癫痫患者控制发作及提高生活质量间找到最佳结合点,可使患者得到有效治疗和护理.  相似文献   

3.
目的:探讨继发性癫痫术中运用皮质脑电图监测切除癫痫病灶的疗效。方法:对13例继发性癫痫患者术前经多次常规脑电图、24h动态脑电图检查定位并联合CT、MRI等检查结果,确定癫痫病灶的准确位置。在皮质脑电图精确定位监测下手术切除致痫灶。结果:13例癫痫患者均通过皮质脑电图监测,准确定位,切除致痫灶,切除病灶后的棘波、尖波,棘、尖慢复合波减少或完全消失。结论:利用皮质脑电图监测手术切除痫灶是治疗继发性癫痫最有效的方法之一。  相似文献   

4.
目的 :探讨尾壳核 (caudate putamen ,CPu) 海马 (hippocampus,HPC) 中部颞叶新皮质 (Medialtemporallobeneocortex ,MTNC)通路在癫痫相关性病理神经网络重建中的作用。方法 :4 5只SD大鼠。用不锈钢双极同芯电极记录右侧HPC、右侧MTNC、左、右侧HPC、右侧HPC和右侧MTNC深部电图 ,重复强直电刺激 (6 0Hz ,2s,0 .4~0 .6mA)大鼠右侧CPu 10次 ,每次刺激间隔时间约 10min ,观察上述脑区深部电图的改变。结果 :强直电刺激右侧CPu可以诱发植入电极同侧或双侧HPC出现原发性后放和继发性电图癫痫样点燃效应 ,也可以表现为HPC深部电图脑电波出现压抑 反弹 癫痫样点燃发作 ;诱发同侧HPC与MTNC出现部分同步性阵发癫痫样电活动 ;腹腔注射东莨菪碱 (0 .0 5mg/kg)后 ,重复上述电刺激右侧CPu实验 ,可以诱发双侧HPC电图出现 3Hz慢波电振荡长时程增强现象 ,也可以诱发同侧HPC与MTNC出现完全同步的阵发性癫痫样电活动。结论 :过度激活CPu功能可以促进CPu HPC MTNC通路癫痫相关性病理生理性神经网络重新的建立 ,该效应累及对侧大脑半球 ,有利于颞叶癫痫的发生  相似文献   

5.
Han D  Zhang XR  Tang YF  Liu ML  Yin SJ 《生理学报》2001,53(3):224-230
本文旨在探讨内嗅皮质(EC)-海马环路在颞叶癫痫发生中的作用,慢性强直电刺激大鼠石背海马(DH-PC)或右中部颞叶新皮质(MTNC),每日一次(60Hz,2s,0.4-0.6mA),加续7-10d,刺激DHPC(57.4%,8/14只)或MTNC(71.42%,10/14只)均能引起电极对侧出现非对称性脑区核磁共振(T2-WI)信号增强,组织学切片证实与扩大的侧脑室吻合,可能涉及脑帝质结构的损伤,DHPC刺激组大鼠对侧脑扣内务 伴有高频原发性湿狗样抖(WEDS),MTNC刺激组大鼠对侧脑损伤伴有低频原发性WEDS,后者在第2个刺激日开始出现,持续到第10天以后,所有假电极组无脑区T2-WI稚号和行为改变,我们推测,刺激HPC或MTNC所致癫痫性早期脑损伤具有同一种机制,涉及EC-HPC环路,刺激MTNC时,可能由于EC潜在门控作用,削弱了进出EC-HPC环路通往新皮质的信息流,致使脑损伤明显时行为发作频度低,另外,非对称非脑扣内务 提示了颞叶癫痫的致痫灶的对侧易感特征。  相似文献   

6.
杏仁核点燃模型癫痫样放电传播途径研究   总被引:1,自引:0,他引:1  
目的 :探讨杏仁核点燃模型癫痫样放电的传播途径。方法 :选择健康Wistar大鼠 3 0只以电刺激杏仁核的方式制作杏仁核点燃癫痫模型 ,于右侧杏仁核、左侧海马及右侧额叶皮质埋植电极记录脑电活动 ,观察电刺激杏仁核时在杏仁核、海马及额叶皮质出现癫痫样放电的潜伏期、最低刺激强度及癫痫样放电的持续时间。结果 :杏仁核出现癫痫样放电时 ,海马及皮质均未记录到癫痫样放电。而当杏仁核、海马及皮质三处出现癫痫样放电时的最低刺激强度依次增大 ,潜伏期依次延长 ,海马处癫痫样放电的持续时间最长。结论 :杏仁核点燃模型癫痫样放电可能由杏仁核经海马传至皮层 ,海马可能为癫痫样放电传播的重要结构  相似文献   

7.
目的 偏头痛是一种复杂的脑功能障碍性疾病,全球范围内患病率为14.4%。功能连接测量两个神经信号之间的统计学相互依赖性,不同的功能连接反映了大脑区域协同工作的不同模式。因此,研究不同脑区的功能连接对于理解偏头痛的病理生理机制具有十分重要的意义。以往基于脑电图对偏头痛患者脑功能连接的分析主要集中在视觉和疼痛刺激。本文尝试研究偏头痛患者在发作间期对体感刺激的皮质反应,以进一步了解偏头痛的神经功能障碍,为偏头痛的预防和治疗提供线索。方法 招募23例无先兆偏头痛患者,10例有先兆偏头痛患者,28名健康对照者。所有受试者均进行详细的基本资料和病史采集,完善量表评估,在正中神经体感刺激下进行脑电图记录。计算68个脑区的相干性作为功能连接,并评估功能连接与临床参数的相关性。结果 在正中神经体感刺激下,无先兆偏头痛和有先兆偏头痛患者的脑电功能连接与对照组相比存在差异,异常的脑电功能连接主要位于感觉辨别、疼痛调节、情绪认知和视觉处理等区域。无先兆偏头痛和有先兆偏头痛患者的大脑皮层对体感刺激可能具有相同的反应方式。偏头痛患者的功能连接异常与临床特征之间存在相关性,可以部分反映偏头痛的严重程度。结论 本研究...  相似文献   

8.
核磁共振检测大鼠早期癫痫源性脑损伤的动态发展特征   总被引:10,自引:4,他引:6  
Zang Y  Han D  Yang YH  Liu ML  Zou ZY 《生理学报》2002,54(3):201-207
为探讨癫痫源性脑损伤形成早期不同脑区病理改变和行为发作的动态发展特征 ,本研究对大鼠右背侧海马 (hippocampus,HPC)施加慢性强直电刺激 (6 0Hz,2s,0 .4~ 0 .6mA)诱发癫痫发作 ,1次 /d。每天记录大鼠原发性湿狗样抖动 (wetdogshakes,WEDS)频率 ,分别对大鼠施加电刺激 2、4、6、8和 10d后进行核磁共振成像 (T2 weightedmagneticresonanceimage ,T2 WI)检测 ,并对鼠脑进行了组织学切片鉴定。结果表明 :与空白对照组相比较 ,(1)施加 2d强直电刺激时 ,大鼠双侧背部侧脑室 (lateralventricle,LV)区域呈现对称性T2 WI信号绝对值增加 (n =4,左侧P =0 .0 0 18;右侧P =0 .0 0 10 ) ;施加 6d强直电刺激时 ,大鼠呈现植入电极对侧中、腹部LV区域T2 WI信号值增加 (n =5 ,P =0 .0 0 73;P =0 .0 2 49) ;施加 8d强直电刺激后 ,大鼠仅出现植入电极对侧腹部LV区域T2 WI信号值增加 (n =3,P =0 .0 34 0 ) ;施加 10d强直电刺激后 ,大鼠植入电极同侧腹部LV区域T2 WI信号值增加 (n =4,P =0 .0 10 7) ;(2 )随着强直电刺激天数增加 ,大鼠原发性WEDS频率高峰期出现在第 4个刺激日 ,然后WEDS频率下降 ,与T2 WI信号强度增加之间呈高度负相关关系 (相关系数r =- 0 .987,P <0 .0 2 ) ;(3)组织学切片鉴定 :T2 WI检测LV信号异  相似文献   

9.
本文采用电极阵列检测技术,在大鼠海马脑切片上诱导出稳定的癫痫样放电,分析、研究130 Hz的高频电刺激(high-frequency stimulation,HFS) CA3区时,海马切片在癫痫发作间期放电(inter-ictal discharges,IID)和发作期放电(ictal discharges,ID)的各项参数、癫痫样放电地起始位点、传播方向和传输速率以及各频段的功率谱密度.结果显示:高频电刺激可以有效地降低癫痫发作期的幅值、减少持续时间、增长潜伏时间、抑制癫痫样放电由IID向ID的转变等.提示高频电刺激抑制癫痫的作用机制是通过促进神经元之间的抑制性传输系统,并且抑制海马神经元之间的兴奋性连接,从而达到抑制效果.  相似文献   

10.
癫痫发作的预测是近年来在临床医学和神经系统科学研究领域中备受关注的问题。如果癫痫发作能够被可靠地预测,则可以提前采取有效的临床预防措施,从而能较大程度地改善癫痫患者的生活质量。文章提出了一种基于二阶C0复杂度的预测算法用于预测癫痫发作。该算法通过分析癫痫患者颅内脑电信号的二阶C0复杂度,利用发作前期复杂度曲线的变化特征预测癫痫发作。作者运用该算法对21组癫痫病人87次发作的临床颅内脑电数据和4组大鼠4次发作的颅内脑电数据进行分析计算,预测准确率分别为94.3%和100%。实验结果表明该算法可以有效地预测癫痫发作,具有潜在的重要临床应用价值。  相似文献   

11.
ObjectiveAlmost two-thirds of patients with Sturge-Weber syndrome (SWS) have epilepsy, and half of them require surgery for it. However, it is well known that scalp electroencephalography (EEG) does not demonstrate unequivocal epileptic discharges in patients with SWS. Therefore, we analyzed interictal and ictal discharges from intracranial subdural EEG recordings in patients treated surgically for SWS to elucidate epileptogenicity in this disorder.MethodsFive intractable epileptic patients with SWS who were implanted with subdural electrodes for presurgical evaluation were enrolled in this study. We examined the following seizure parameters: seizure onset zone (SOZ), propagation speed of seizure discharges, and seizure duration by visual inspection. Additionally, power spectrogram analysis on some frequency bands at SOZ was performed from 60 s before the visually detected seizure onset using the EEG Complex Demodulation Method (CDM).ResultsWe obtained 21 seizures from five patients for evaluation, and all seizures initiated from the cortex under the leptomeningeal angioma. Most of the patients presented with motionless staring and respiratory distress as seizure symptoms. The average seizure propagation speed and duration were 3.1 ± 3.6 cm/min and 19.4 ± 33.6 min, respectively. Significant power spectrogram changes at the SOZ were detected at 10–30 Hz from 15 s before seizure onset, and at 30–80 Hz from 5 s before seizure onset.SignificanceIn patients with SWS, seizures initiate from the cortex under the leptomeningeal angioma, and seizure propagation is slow and persists for a longer period. CDM indicated beta to low gamma-ranged seizure discharges starting from shortly before the visually detected seizure onset. Our ECoG findings indicate that ischemia is a principal mechanism underlying ictogenesis and epileptogenesis in SWS.  相似文献   

12.
1. Experiments were performed to investigate the effects of cortical lesions on convulsive behaviour. Rats were lesioned in the left motor or sensory cortex by aspirating cortical tissue 2 to 3 months prior to the elicitation of convulsions. Convulsions were induced in the awake rats by the GABA antagonist Na-penicillin (Na-PCN) which was applied into the superficial layer of the foreleg field of their right motor cortex. Convulsive activity was recorded by means of the EEG. 2. The time courses of convulsive cortical activity were similar in the animals without or with a cortical lesion. Generalized seizures belonged to the tonic-clonic type in both intact and lesioned rats. 3. The early period of convulsive activity was described by the time to the onset (latency) of the first convulsive potential, jerk and seizure, and by the mean repetition rate of jerks during the first ten minutes, and the duration of the first generalized seizure. None of these parameters was significantly affected by a cortical lesion. 4. The median duration of the convulsive activity in intact animals was 162 min. In rats with a lesion in the sensory cortex it raised to more than 540 min while a lesion of the motor cortex increased the median duration to more than 273 min. The differences between intact and lesioned rats were significant (p less than 0.01 and p = 0.05, respectively). 5. The median time to the onset of the last generalized seizure in intact rats corresponded to 92 min with respect to the time of Na-PCN application. In rats with a lesion of the sensory cortex the last seizure was generated 433 min and in animals with a lesion of the motor cortex 167 min after Na-PCN treatment of the motor cortex of one side. This increase of latency of the last seizure was significant for the rats with a lesioned sensory area (p less than 0.02) or motor area (p = 0.05) compared to that of the intact rats. Additionally, the number of generalized seizures was significantly (p less than 0.01) increased by both groups of rats with a lesion of the motor or sensory cortex. 6. It is suggested that a substantial lesion of the cortex decreases predominantly the intrinsic cortical inhibition thus destabilizing brain function. This destabilizing effect becomes pronounced under the condition of superimposed suppression of the GABAergic cortical component. It is concluded that the intrinsic cortical inhibitory mechanism which in the intact brain acts against hyperexcitation and prevents the development of neuronal synchronization, i.e. the formation of seizures, becomes less effective in performing this task once an abnormal brain activation has developed.  相似文献   

13.
The clinical seizure pattern, particularly the initial phenomena, plus the EEG, when satisfactory recording of the seizure onset can be achieved, determine the primary localization of epileptic phenomena. The EEG has also demonstrated, by the presence of interictal epileptiform spike discharges, the presence of a second-order localization of epileptic phenomena, namely, the location and extent of cortex adjacent to the site of origin of the neuronal seizure discharge that is recruited into action in a clinical epileptic seizure. Experience with cortical resection in the treatment of focal epilepsy has demonstrated the importance of a third-order localization of epileptic phenomena, namely, how much of the potentially epileptogenic cortex must be excised in order to produce a satisfactory reduction of the seizure tendency.  相似文献   

14.
BackgroundEpilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure.MethodsDespite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels.ResultsIn patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied.ConclusionsWe conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start.  相似文献   

15.
The therapeutic goal in the neurosurgical treatment of medically intractable epilepsy is complete seizure control, for both biologic and psychosocial reasons. Cortical resections are more likely to accomplish this than other surgical alternatives for epilepsy. Although abnormalities on new imaging techniques (CT, positron emission scanning) aid in identifying the epileptic focus, interictal epileptiform EEG changes remain the main indicator of focal origin of the seizures. Where this is equivocal, direct brain recording of spontaneous seizures with subdural electrodes is of value in identifying the side and lobe of seizure onset. The cortical resection is then tailored by the extent of the interictal electrocorticographic abnormalities and functional identification of essential areas such as those for language, using an electrical stimulation mapping technique, under local anesthesia. With this approach, half of the patients with temporal lobe foci are seizure-free since the time of operation, over two-thirds become so with time, and over three-quarters have at least very major reductions in seizure frequency.  相似文献   

16.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.  相似文献   

17.
Modality specificity of human primary somatosensory cortex was studied by recording somatosensory evoked potentials (SEPs) from subdural electrodes in a patient with intractable focal motor seizure. A newly developed device was used for selectively activating proprioception. The spatial and temporal distributions of proprioception-related SEPs elicited by brisk passive flexion movement at the proximal interphalangeal (PIP) joint of the middle finger (4 degrees in 25 ms) were quite different from those to cutaneous sense evoked by electric stimulation of the digital nerve at the same site. It was for the first time demonstrated that proprioception-related SEPs following passive finger movement do not originate in area 3b, which was clearly activated by cutaneous stimulation, and that other sites at the sensorimotor cortex such as areas 2, 3a and 4 possibly contribute to the cortical processing of proprioception.  相似文献   

18.
Mechanisms underlying seizure generation are traditionally thought to act over seconds to minutes before clinical seizure onset. We analyzed continuous 3- to 14-day intracranial EEG recordings from five patients with mesial temporal lobe epilepsy obtained during evaluation for epilepsy surgery. We found localized quantitative EEG changes identifying prolonged bursts of complex epileptiform discharges that became more prevalent 7 hr before seizures and highly localized subclinical seizure-like activity that became more frequent 2 hr prior to seizure onset. Accumulated energy increased in the 50 min before seizure onset, compared to baseline. These observations, from a small number of patients, suggest that epileptic seizures may begin as a cascade of electrophysiological events that evolve over hours and that quantitative measures of preseizure electrical activity could possibly be used to predict seizures far in advance of clinical onset.  相似文献   

19.
Malformations of cortical development (MCD) have been increasingly recognized as an important cause of intractable epilepsy. The aim of our study was to define epileptogenicity of MCDs by correlating MRI, EEG and semiology of epileptic attacks, and to determine the effect of MCD on drug resistant epilepsy. We also intended to reveal the utility of interictal single photo emission computed tomography (SPECT) in verification of MCD lesions and relative prevalence of different MCDs. Based on interictal EEG finding, semiology of the epileptic attacks and brain magnetic resonance imaging (MRI) "electroclinical epileptogenicity" of MCD was defined. Brain MRI revealed cortical dysplasia (CD) in nine patients, polymicrogyria in four patients, lissencephaly and schizencephaly in one patient each. Three patients had a combination of malformations. The localization of SPECT hypoperfusion corresponded to MCD lesion in ten (66.67%) patients. Electroclinically confirmed epileptogenicity of MCD overlapped with MR and interictal SPECT findings in fourteen (93.3%) and nine (60.0%) patients, respectively. Our study results demonstrated the MCD lesions to be highly epileptogenic and a frequent cause of intractability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号