首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
核有丝分裂器蛋白(Nuclear Mitotic Apparatus Protein,NuMA)是一种在间期细胞核内有大量表达的大分子蛋白。NuMA是微管聚合因子,能使微管锚定于纺锤体极。在细胞有丝分裂,减数分裂过程中对纺锤体的形成和形态的维持发挥重要作用。  相似文献   

2.
NuMA(nuclear mitotic apparatus)是一个高分子量的细胞核有丝分裂器蛋白。自1980年发现至今已有30多年的历史。研究发现,NuMA对细胞有丝分裂过程中纺锤体的形成和结构维持、细胞分裂后期核重组均发挥重要作用。NuMA的过表达与恶性肿瘤发生发展相关,NuMA的降解将导致细胞分裂异常及细胞核骨架的分解。该文将对NuMA的表达及定位、可变剪接体、相互作用蛋白质及其在有丝分裂、不对称分裂及核移植胚胎早期发育等过程中的功能进行了系统综述。  相似文献   

3.
小鼠孤雌胚早期发育过程中γ-微管蛋白的动态变化   总被引:1,自引:0,他引:1  
微管蛋白是构成微管的主要蛋白,其中α、β亚单位形成异二聚体,而γ-微管蛋白在微管组装中起作用。为了研究小鼠早期孤雌胚中廿微管蛋白的动态变化,本实验采用了免疫荧光化学染色与激光共聚焦显微镜观察相结合的方法,在SrCl2激活的卵母细胞减数分裂以及早期孤雌胚有丝分裂过程中对γ-微管蛋白进行了定位观察。结果显示,SrCl2和细胞松弛素B(cytochalasin B,CB)诱导的第二次减数分裂中期(metaphase Ⅱ ofmeiosis,MII)小鼠卵母细胞恢复减数分裂,并且纺锤体始终与质膜平行,表明纺锤体旋转被抑制,但核分裂不受影响。减数分裂过程中γ-微管蛋白主要定位于中期纺锤体两极和后期分开的染色单体之间;孤雌活化两雌原核形成以后,γ-微管蛋白聚集在两雌原核周围。在早期孤雌胚有丝分裂间期无定形的γ-微管蛋白均匀分布于核;前中期γ-微管蛋白向两极移动,遍布于整个纺锤体区。有丝分裂中期、后期和末期廿微管蛋白的分布变化与减数分裂相似。结果表明,SrCl2和CB激活的MII卯母细胞产生杂合二倍体;γ-微管蛋白具有促微管负极帽形成和稳定微管的功能,从而促进纺锤体的形成;分裂后期和末期廿微管蛋白的重新分布可能是由纺锤体牵引同源染色体分离所诱导的:γ-微管蛋白负责两雌原核的迁移靠近。  相似文献   

4.
核仁纺锤体相关蛋白1(nucleolar and spindle-associated protein 1, NUSAP1)是一种微管结合蛋白,它与微管结合后稳定微管并参与细胞分裂,与染色体结合后,促进有丝分裂纺锤体微管的形成;因此NUSAP1与细胞有丝分裂进程、纺锤体的形成有密切关系。NUSAP1的一个关键功能是在有丝分裂早期和晚期起调节作用。NUSAP1在许多恶性肿瘤中高表达,因此通过NUSAP1的靶向作用机制的研究筛选出合适的靶向药物对于恶性肿瘤的治疗具有潜在的应用前景。本文就NUSAP1在恶性肿瘤中的作用机制及其在恶性肿瘤治疗中的价值进行分析与总结。  相似文献   

5.
γ-微管蛋白在真核生物体内以γ-微管蛋白环式复合体和γ-微管蛋白小复合体两种形式存在.γ-微管蛋白在真核生物体内的主要功能是参与微管晶核形成、有丝分裂纺锤体的形成以及细胞周期调控等.该文重点介绍植物体内的γ-微管蛋白所行使的功能.  相似文献   

6.
染色体动粒与细胞有丝分裂   总被引:2,自引:0,他引:2  
染色体动粒与细胞有丝分裂杨新林,王永潮(北京师范大学生物系细胞室,北京100875)关键词动粒,有丝分裂真核细胞由间期进入有丝分裂期时伴随着一系列事件的发生,其中最显著的变化之一是有丝分裂纺锤体的形成。有丝分裂纺锤体至少由两类微管组成:一类是星状微管...  相似文献   

7.
γ-微管蛋白研究进展   总被引:7,自引:0,他引:7  
概述了近年来对γ-微管蛋白复合体结构、分子机制以及功能的研究进展.γ-微管蛋白是真核生物体内一种重要的保守性功能蛋白,以γ-微管蛋白小复合体和γ-微管蛋白环式复合体两种形式存在.通过γ-微管蛋白复合体结合蛋白定位于微管组织中心,参与微管的晶核起始以及有丝分裂纺锤体的组装等细胞功能.  相似文献   

8.
核有丝分裂器蛋白(NuMA)是一种负责纺缍体极装配的蛋白质。供体细胞核移入去核卵母细胞后,在供体核中未发现NuMA,在重构胚的原核中出现NuMA。克隆胚胎卵裂后,NuMA存在于卵裂球的核中。在克隆胚胎中,NuMA的缺乏会导致有丝分裂纺缍体异常,染色体排列混乱,这些异常影响克隆胚胎的正常发育。  相似文献   

9.
驱动蛋白家族成员2A(KIF2A)是一种能够与微管相互作用的蛋白,它参与了细胞内物质运输、细胞迁移、细胞形态改变,以及有丝分裂细胞纺锤体动力学等重要的细胞活动。近年来研究发现,KIF2A凭借其独特的微管解聚能力,对神经元中神经突的生长以及细胞有丝分裂中染色体的运动起着重要的调节作用。将主要对KIF2A在脊椎动物神经元发育和细胞有丝分裂中所行使的作用和功能进行综述。  相似文献   

10.
问题解答     
问细胞有丝分裂时期的纺锤体是由什么东西组成,又是怎样形成的? 答纺锤体中除了凝集的染色体外,主要是微管组成的,包括着丝粒微管,极间微管和星体微管,在中学课本上分别称为染色体丝、极丝和星射线(图11)。微管是直径约22毫微米的空心纤维。构成微  相似文献   

11.
NuMA associates with microtubule motors during mitosis to perform an essential role in organizing microtubule minus ends at spindle poles. Using immunogold electron microscopy, we show that NuMA is a component of an electron-dense material concentrated at both mitotic spindle poles in PtK1 cells and the core of microtubule asters formed through a centrosome-independent mechanism in cell-free mitotic extracts. This NuMA-containing material is distinct from the peri-centriolar material and forms a matrix that appears to anchor microtubule ends at the spindle pole. In stark contrast to conventional microtubule-associated proteins whose solubility is directly dependent on microtubules, we find that once NuMA is incorporated into this matrix either in vivo or in vitro, it becomes insoluble and this insolubility is no longer dependent on microtubules. NuMA is essential for the formation of this insoluble matrix at the core of mitotic asters assembled in vitro because the matrix is absent from mitotic asters assembled in a cell-free mitotic extract that is specifically depleted of NuMA. These physical properties are consistent with NuMA being a component of the putative mitotic spindle matrix in vertebrate cells. Furthermore, given that NuMA is essential for spindle pole organization in vertebrate systems, it is likely that this insoluble matrix plays an essential structural function in anchoring and/or stabilizing microtubule minus ends at spindle poles in mitotic cells.  相似文献   

12.
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.  相似文献   

13.
The protein NuMA localizes to mitotic spindle poles where it contributes to the organization of microtubules. In this study, we demonstrate that NuMA loses its stable association with the spindle poles after anaphase onset. Using extracts from Xenopus laevis eggs, we show that NuMA is dephosphorylated in anaphase and released from dynein and dynactin. In the presence of a nondegradable form of cyclin B (Δ90), NuMA remains phosphorylated and associated with dynein and dynactin, and remains localized to stable spindle poles that fail to disassemble at the end of mitosis. Inhibition of NuMA or dynein allows completion of mitosis, despite inducing spindle pole abnormalities. We propose that NuMA functions early in mitosis during the formation of spindle poles, but is released from the spindle after anaphase, to allow spindle disassembly and remodelling of the microtubule network.  相似文献   

14.
Nuclear mitotic apparatus protein (NuMA) is an essential vertebrate component in organizing microtubule ends at spindle poles. The NuMA-dynactin/dynein motor multiprotein complex not only explains the transport of NuMA along spindle fibers but also is linked to the process of microtubule focusing. The interaction sites of NuMA to dynein/dynactin have not been mapped. In the yet functionally uncharacterized N terminus of NuMA, we predict a calponin-homology (CH) domain, a motif with binding activity for actin-like molecules. We substantiate the primary sequence analysis-based prediction with secondary structure and fold recognition analysis, and we propose the N-terminal CH domain of NuMA as a likely interaction site for actin-related protein 1 (Arp1) protein of the dynactin/dynein complex.  相似文献   

15.
NuMA is a large nuclear protein whose relocation to the spindle poles is required for bipolar mitotic spindle assembly. We show here that this process depends on directed NuMA transport toward microtubule minus ends powered by cytoplasmic dynein and its activator dynactin. Upon nuclear envelope breakdown, large cytoplasmic aggregates of green fluorescent protein (GFP)-tagged NuMA stream poleward along spindle fibers in association with the actin-related protein 1 (Arp1) protein of the dynactin complex and cytoplasmic dynein. Immunoprecipitations and gel filtration demonstrate the assembly of a reversible, mitosis-specific complex of NuMA with dynein and dynactin. NuMA transport is required for spindle pole assembly and maintenance, since disruption of the dynactin complex (by increasing the amount of the dynamitin subunit) or dynein function (with an antibody) strongly inhibits NuMA translocation and accumulation and disrupts spindle pole assembly.  相似文献   

16.
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.  相似文献   

17.
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.  相似文献   

18.
19.
Ferhat  Lotfi  Cook  Crist  Kuriyama  Ryoko  Baas  Peter W. 《Brain Cell Biology》1998,27(12):887-899
Neurons are terminally post-mitotic cells that utilize their microrubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a ~230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtubules, thereby helping to organize them into a bipolar spindle. In contrast to mitotic cells, post-mitotic neurons display NuMA both in the nucleus and in the cytoplasm. NuMA appears as multiple small particles within the somatodendritic compartment of the neuron, where its levels increase during early dendritic differentation. A partial but not complete colocalization with minus-ends of microtubules is suggested by the distribution of the particles during development and during drug treatments that alter the microtubule array. These observations provide an initial set of clues regarding a potentially important function of NuMA in the organization of microtubules within the somatodendritic compartment of the neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号