首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The European Centre for the Validation of Alternative Methods (ECVAM) has organised an interlaboratory prevalidation study on the Syrian hamster embryo (SHE) cell transformation assay (CTA) at pH 7.0 for the detection of rodent carcinogens. The SHE CTA at pH 7.0 has been evaluated for its within-laboratory reproducibility, transferability and between-laboratory reproducibility. Four laboratories using the same basic protocol with minor modifications participated in this study and tested a series of six coded-chemicals: four rodent carcinogens (benzo(a)pyrene, 3-methylcholanthrene, 2,4-diaminotoluene and o-toluidine HCl) and two non-carcinogens (anthracene and phthalic anhydride). All the laboratories found the expected results with coded chemicals except for phthalic anhydride which resulted in a different call in only one laboratory. Based on the outcome of this study, it can be concluded that a standardised protocol is available that should be the basis for future use. This protocol and the assay system itself are transferable between laboratories and the SHE CTA at pH 7.0 is reproducible within- and between-laboratories.  相似文献   

2.
The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed.  相似文献   

3.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is an important in vitro method that is highly predictive of rodent carcinogenicity. It is a key method for reducing animal usage for carcinogenicity prediction. The SHE assay has been used for many years primarily to investigate and identify potential rodent carcinogens thereby reducing the number of 2-year bioassays performed in rodents. As for other assays with a long history of use, the SHE CTA has not undergone formal validation. To address this, the European Centre for the Validation of Alternative Methods (ECVAM) coordinated a prevalidation study. The aim of this study was to evaluate the within-laboratory reproducibility, test method transferability, and between-laboratory reproducibility and to develop a standardised state-of-the-art protocol for the SHE CTA at pH 6.7. Formal ECVAM principles for criteria on reproducibility (including the within-laboratory reproducibility, the transferability and the between-laboratories reproducibility) were applied. In addition to the assessment of reproducibility, this study helped define a standard protocol for use in developing an Organisation for Economic Co-operation and Development (OECD) test guideline for the SHE CTA. Six compounds were evaluated in this study: benzo(a)pyrene, 3-methylcholanthrene, o-toluidine HCl, 2,4-diaminotoluene, phthalic anhydride and anthracene. Results of this study demonstrate that a protocol is available that is transferable between laboratories, and that the SHE CTA at pH 6.7 is reproducible within- and between-laboratories.  相似文献   

4.
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis.  相似文献   

5.
This catalogue is a display of focus photos representative of the BALB/c 3T3 cell transformation assay (CTA). It is intended as a visual aid for the identification and the scoring of foci in the conduct of the assay. A proper training from experienced personnel together with the protocol reported in this issue and the present photo catalogue will support method transfer and consistency in the assay results.  相似文献   

6.
7.
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.  相似文献   

8.
The present protocol has been developed for the BALB/c 3T3 cell transformation assay (CTA), following the prevalidation study coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and reported in this issue (Tanaka et al. [16]). Based upon the experience gained from this effort and as suggested by the Validation Management Team (VMT), some acceptance and assessment criteria have been refined compared to those used during the prevalidation study. The present protocol thus describes cell culture maintenance, the dose-range finding (DRF) experiment and the transformation assay, including cytotoxicity and morphological transformation evaluation. Use of this protocol and of the associated photo catalogue included in this issue (Sasaki et al. [17]) is recommended for the future conduct of the BALB/c 3T3 CTA.  相似文献   

9.
It has become an important task to develop a simple in vitro method for the detection of non-genotoxic carcinogens, among which tumor promoters are included. Bhas 42 cells are v-Ha-ras-transfected BALB/c 3T3 cells and are regarded as initiated cells in the 2-stage transformation paradigm. We designed a method for detecting tumor promoters by the use of Bhas 42 cells at advanced passage generation. In this method, the cells are cultured in six-well plates for 17 days during which test chemicals are added in the medium for 11 days from days 3 to 14. The end-point of the assay is the induction of transformed foci. When the tumor promoter TPA was used, a significant number of transformed foci were induced concentration-dependently, whereas only a few foci were observed in control cultures. When various chemicals were examined by the method, a reasonable correlation was observed with the reported tumor-promoting ability in animal experiments. We propose that the Bhas 42 cell transformation method is practical and useful for the detection of tumor promoters.  相似文献   

10.
The mouse cell line MO-5 is resistant to transformation by various chemical carcinogens and also by UV irradiation (C. Yasutake, Y. Kuratomi, M. Ono, S. Masumi, and M. Kuwano, Cancer Res. 47:4894-4899, 1987). Northern (RNA) blot analysis showed active expression of ras and myc genes in MO-5 and BALB/3T3 cells. The effect of transfection of various oncogenes on transformation was compared in MO-5 cells and parental BALB/3T3 cells. Activated c-H-ras, c-N-ras, and v-mos gene induced transformation foci of MO-5 and BALB/3T3. Introduction of the polyomavirus middle T-antigen (mTag) or the Rous sarcoma virus-related oncogene v-src, however, efficiently transformed BALB/3T3 but not MO-5 cells. Expression and phosphorylation of mTag and the associated c-src proteins were observed in mTag-transfected clones of MO-5 as in BALB/3T3 and phosphorylation of the src protein was observed in v-src-transfected BALB/3T3 and MO-5 clones. Hybrids between mTag- or v-src-induced transformants of BALB/3T3 and untransformed MO-5 maintained the transformation phenotype, suggesting that no dominant suppressor of transformation exists in MO-5. A hybrid clone between BALB/3T3 and MO-5 induced efficient transformation foci after transfection with the mTag gene, suggesting that the deficient transformation phenotype of MO-5 was recessive. Instead, some other alteration of MO-5, plausibly membrane function, might lead to abortive transformation by chemical carcinogens and also by mTag and the v-src gene product.  相似文献   

11.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

12.
13.
Cell transformation assay using BALB/c 3T3 cells, C3H10T1/2 cells and others, can simulate the two-stage carcinogenesis utilized for formation of transformed foci. A sensitive cell transformation assay for tumor initiators as well as promoters has been developed using a v-Ha-ras-transfected BALB/c 3T3 cell line, Bhas 42; these cells are regarded as initiated in the two-stage paradigm of carcinogenesis. To distinguish between initiation and promotion, the initiation assay involves a 2-day treatment of low-density cells, obtained one day after plating, with a test chemical, and the promotion assay involves treatment of near-confluent cells with a test chemical for a period of 12 days (Day 3-14). When Bhas 42 cells were treated with tumor initiators, N-methyl-N'-nitro-N-nitrosoguanidine and 3-methylcholanthrene, transformed foci were induced in the initiation assay but not in the promotion assay. In contrast, tumor promoters, 12-O-tetradecanoylphorbol-13-acetate, lithocholic acid and okadaic acid, gave negative responses in the initiation assay but positive responses in the promotion assay. The results were reproducible with various treatment protocols. Sixteen polycyclic aromatic hydrocarbons were examined using both assays. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene induced focus formation only in the initiation assay. Increase of focus formation was observed in the promotion assay with benzo[e]pyrene, benzo[ghi]perylene, 1-nitropyrene and pyrene. Benz[a]anthracene, benz[b]anthracene, chrysene and perylene showed positive responses in both initiation and promotion assays. Results of initiation and promotion assays of acenaphthylene, anthracene, coronene, 9,10-diphenylanthracene, naphthalene and phenanthrene were negative or equivocal. The present Bhas assays for the detection of either/both initiating and promoting activities of chemicals are sensitive and of high performance compared with other cell transformation assays.  相似文献   

14.
A Sakai  M Sato 《Mutation research》1989,214(2):285-296
The present studies intend to heighten the sensitivity of BALB/3T3 cells to chemical carcinogens in a transformation assay, by including exposure of carcinogen-treated cells to a tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). In the assay, cells were first treated with a known or suspected carcinogen for 72 h, cultured in normal medium for 3 days, exposed to media with and without TPA for 2 weeks, and cultured in normal medium for an additional 3 weeks. Benzo[a]pyrene, a potent carcinogen with a polycyclic aromatic hydrocarbon structure, caused transformation in the presence and absence of TPA. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG), a carcinogen with direct-acting alkylating ability, did not induce significant transformation without TPA, while treatment with MNNG followed by TPA produced numerous transformed foci, classifying MNNG as an initiating agent of transformation under the condition presented in this report. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2), sodium nitrite and butylated hydroxyanisole (BHA), which are carcinogenic and/or mutagenic, produced transformed foci in significant numbers of treated dishes in the presence but not in the absence of TPA. Butylated hydroxytoluene (BHT) and sodium saccharin, which are considered to be a modifier and a promoter of carcinogenesis, did not cause significant transformation with or without TPA treatment. These studies suggest that this 2-stage transformation system is capable of detecting a wider range of chemical carcinogens as initiating agents than the standard assay. Studies on the transformation assay schedule revealed that the proportion of dishes with foci, the number of foci per dish and sizes of foci all increased in the normal medium after the termination of TPA treatment. Therefore, transformed cells appear to proliferate independently of TPA after those cells are released by TPA from postconfluence inhibition of cell division.  相似文献   

15.
A collaborative study involving laboratories in six countries was initiated under the sponsorship of the International Programme on Chemical Safety (IPCS) to determine the sensitivity, efficiency and reliability of the Vicia faba root tip meristem chromosomal aberration assay using a standardized protocol. The six Laboratories that participated in this study were located in the Slovak Republic, India, Japan, Poland, Sweden and the USA. All laboratories adhered to a standardized protocol for the Vicia faba chromosomal aberartion assay. Four coded chemicals, azidoglycerol (AG), N-methyl-N-nitrosourea (MNU), sodium azide (NaN3) and maleic hydrazide (MH) were tested with the Vicia faba chromosomal aberration assay. Of the four chemicals, three (MH, AG and MNU) were found to be clastogenic and gave a concentration related response. However, the results of NaN3 were equivocal which might be explained by the stability of NaN3. The conclusions from this study suggest that the Vicia faba chromosomal aberration bioassay is an efficient and reliable short-term bioassay for the rapid screening of chemicals for clastogenicity.  相似文献   

16.
In vitro cell transformation is a process characterized by a series of progressive distinctive events that often emulate manifestations occurring in vivo and which are associated with neoplasia. Attendant cellular and sub-cellular alterations include, among others: cellular immortality, phenotypic changes, aneuploidy, genetic variability, cellular disarray, anchorage-independent growth, and tumorigenicity in vivo. Early chemically induced neoplastic transformation studies involved the use of normal diploid (Syrian) hamster embryo (SHE) cells and monitored the formation of morphologically altered colonies. Later investigations employed primarily two established mouse cell lines, i.e. the BALB/c 3T3 A31 cell line and the C3H 10T 1/2 cell line, and monitored the induction of morphologically aberrant foci. In either case, such transformed cellular clusters (colonies and foci) could induce tumors upon inoculation in vivo. Some subsequent noteworthy advancements using these systems included pH adjustments, metabolic supplementation, amplification of expression of formerly latent transformed foci, concurrent detection of mutagenesis and transformation, and use of a Bhas 42 cell line (v-Ha-ras transfected BALB/c 3T3 cells) to detect both tumor initiators and promoters. Over time, such transformation assay systems have been found useful in academic, industry and regulatory laboratories, generally for research purposes, but also occasionally as screening tools for potential chemical carcinogens. Nevertheless, to date, use of these assays for decision-making purposes in the regulatory arena remains elusive and will require comprehensive validation to gain universal acceptance.  相似文献   

17.
An analysis is presented in which are evaluated correlations among chemical structure, mutagenicity to Salmonella, and carcinogenicity to rats and mice among 301 chemicals tested by the U.S. NTP. Overall, there was a high correlation between structural alerts to DNA reactivity and mutagenicity, but the correlation of either property with carcinogenicity was low. If rodent carcinogenicity is regarded as a singular property of chemicals, then neither structural alerts nor mutagenicity to Salmonella are effective in its prediction. Given this, the database was fragmented and new correlations sought between the derived sub-groups. First, the 301 chemicals were segregated into six broad chemical groupings. Second, the rodent cancer data were partially segregated by target tissue. Using the previously assigned structural alerts to DNA reactivity (electrophilicity), the chemicals were split into 154 alerting chemicals and 147 non-alerting chemicals. The alerting chemicals were split into three chemical groups; aromatic amino/nitro-types, alkylating agents and miscellaneous structurally-alerting groups. The non-alerting chemicals were subjectively split into three broad categories; non-alerting, non-alerting containing a non-reactive halogen group, and non-alerting chemical with minor concerns about a possible structural alert. The tumor data for all 301 chemicals are re-presented according to these six chemical groupings. The most significant findings to emerge from comparisons among these six groups of chemicals were as follows: (a) Most of the rodent carcinogens, including most of the 2-species and/or multiple site carcinogens, were among the structurally alerting chemicals. (b) Most of the structurally alerting chemicals were mutagenic; 84% of the carcinogens and 66% of the non-carcinogens. 100% of the 33 aromatic amino/nitro-type 2-species carcinogens were mutagenic. Thus, for structurally alerting chemicals, the Salmonella assay showed high sensitivity and low specificity (0.84 and 0.33, respectively). (c) Among the 147 non-alerting chemicals less than 5% were mutagenic, whether they were carcinogens or non-carcinogens (sensitivity 0.04).  相似文献   

18.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline.  相似文献   

19.
Keshava N 《Mutation research》2000,447(2):281-286
4 mm in diameter), invasiveness (smooth vs. invading margins) and other properties (piling vs. spread). In our previous report, we showed that cells from all five types grew in soft agar, transformed normal NIH 3T3 cells and formed foci on normal layer of BALB/c-3T3 cells. In this study, the neoplastic/tumorigenic potential of cells from the five different types of transformed foci was investigated in nude mice. About two million cells from each transformed focus were injected into 4-week-old nude mice. Non-transformed BALB/c-3T3 cells were used as control. The results of this study indicate that all the 45 athymic mice injected with different transformants developed tumors between 2 and 4 weeks after injection. Tumors were not observed in eight mice injected with non-transformed BALB/c-3T3 cells. All tumors were histopathologically confirmed fibrosarcomas. These findings indicate that all five morphologically different foci show tumorigenicity and that any foci of size > or =2 mm regardless of invasiveness and piling could be scored as positive during the cell transformation assay.  相似文献   

20.
The genotoxicity of benzo[a]pyrene, cyclophosphamide, 2-aminoanthracene, 2-nitrofluorene, nitrosated coal-dust extracts, and cigarette-smoke condensate were tested with the micronucleus assay using an established mammalian cell line. The results showed that all chemicals and complex mixtures studied induced micronuclei in BALB/c-3T3 cells. These results indicate that BALB/c-3T3 cells are capable of activating certain promutagens and procarcinogens. It seems, therefore, that in addition to cell transformation, the micronucleus assay in BALB/c-3T3 cells without an exogenous activation system may be useful for in vitro studies to detect genotoxic chemicals and complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号