首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  相似文献   

2.
1,3-Propanediol (1,3-PD), an important material for chemical industry, is biologically synthesized by glycerol dehydratase (GDHt) and 1,3-propanediol dehydrogenase (PDOR). In present study, the dhaBCE and dhaT genes encoding glycerol dehydratase and 1,3-propanediol dehydrogenase respectively were cloned from Citrobacter freundii and co-expressed in E. coli. Sequence analysis revealed that the cloned genes were 85 and 77 % identical to corresponding gene of C. freundii DSM 30040 (GenBank No. U09771), respectively. The over-expressed recombinant enzymes were purified by nickel-chelate chromatography combined with gel filtration, and recombinant GDHt and PDOR were characterized by activity assay, kinetic analysis, pH, and temperature optimization. This research may form a basis for the future work on biological synthesis of 1,3-PD.  相似文献   

3.
A range of recombinant strains of Escherichia coli were developed to produce 1,3-propanediol (1,3-PDO), an important C3 diol, from glucose. Two modules, the glycerol-producing pathway converting dihydroxyacetone phosphate to glycerol and the 1,3-PDO-producing pathway converting glycerol to 1,3-PDO, were introduced into E. coli. In addition, to avoid oxidative assimilation of the produced glycerol, glycerol oxidative pathway was deleted. Furthermore, to enhance the carbon flow to the Embden- Meyerhof-Parnas pathway, the Entner-Doudoroff pathway was disrupted by deleting 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. Finally, the acetate production pathway was removed to minimize the production of acetate, a major and toxic by-product. Flask experiments were carried out to examine the performance of the developed recombinant E. coli. The best strain could produce 1,3-PDO with a yield of 0.47 mol/mol glucose. Along with 1,3-PDO, glycerol was produced with a yield of 0.33 mol/mol glucose.  相似文献   

4.
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.  相似文献   

5.
Summary The structural gene yqhD from a wild-type Escherichia coli encoding 1,3-propanediol oxidoreductase isoenzyme and the structural gene dhaB from Citrobacter freundii encoding glycerol dehydratase were amplified by using the PCR method. The temperature control expression vector pHsh harboring the yqhD and dhaB genes was transformed into E. coli JM109 to yield the recombinant strain E. coli JM109 (pHsh-dhaB-yqhD). The response surface method (RSM) was then applied to further optimize the fermentation condition of the recombinant strain. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of 1,3-propanediol by recombinant strain E. coli JM109. The model estimated that a maximal yield of 1,3-propanediol (43.86 g/l) could be obtained when the concentrations of glycerol, yeast extract and vitamin B12 were set at 61.8 g/l, 6.2 g/l and 49 mg/l, respectively; and the fermentation time was 30 h. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yield of 1,3-propanediol. The yield and productivity under the optimal parameters and process can reach 43.1 g/l and 1.54 g/l/h. Maximum 1,3-propanediol yield of 41.1 g/l was achieved in a 5-l fermenter using the optimized medium. This makes the engineered strain have potential application in the conversion of glycerol to 1,3-propanediol on an industrial scale.  相似文献   

6.
The enteric bacterium Escherichia blattae has been analyzed for the presence of cobalamin (B12) biosynthesis and B12-dependent pathways. Biochemical studies revealed that E. blattae synthesizes B12 de novo aerobically and anaerobically. Genes exhibiting high similarity to all genes of Salmonella enterica serovar Typhimurium, which are involved in the oxygen-independent route of B12 biosynthesis, were present in the genome of E. blattae DSM 4481. The dha regulon encodes the key enzymes for the anaerobic conversion of glycerol to 1,3-propanediol, including coenzyme B12-dependent glycerol dehydratase. E. blattae DSM 4481 lacked glycerol dehydratase activity and showed no anaerobic growth with glycerol, but the genome of E. blattae DSM 4481 contained a dha regulon. The E. blattaedha regulon is unusual, since it harbors genes for two types of dihydroxyacetone kinases. The major difference to dha regulons of other enteric bacteria is the inactivation of the dehydratase-encoding gene region by insertion of a 33,339-bp prophage (MuEb). Sequence analysis revealed that MuEb belongs to the Mu family of bacteriophages. The E. blattae strains ATCC 33429 and ATCC 33430 did not contain MuEb. Accordingly, both strains harbored an intact dehydratase-encoding gene region and fermented glycerol. The properties of the glycerol dehydratases and the correlating genes (dhaBCE) of both strains were similar to other B12-dependent glycerol and diol dehydratases, but both dehydratases exhibited the highest affinity for glycerol of all B12-dependent dehydratases characterized so far. In addition to the non-functional genes encoding B12-dependent glycerol dehydratase, the genome of E. blattae DSM 4481 contained the genes for only one other B12-dependent enzyme, the methylcobalamin-dependent methionine synthase.  相似文献   

7.
T Toraya  S Kuno    S Fukui 《Journal of bacteriology》1980,141(3):1439-1442
The presence of diol dehydratase and glycerol dehydratase was shown in several bacteria of Enterobacteriaceae grown anaerobically on 1,2-propanediol and on glycerol, respectively. Diol dehydratases of Enterobacteriaceae were immunologically similar, but distinct from that of Propionibacterium freudenreichii.  相似文献   

8.
Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C2 to C4) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any other known gene product.  相似文献   

9.
The coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii is subject to suicide inactivation by the natural substrate glycerol during catalysis. We identified dhaF and dhaG as the genes responsible for reactivation of inactivated dehydratase. Northern blot analyses revealed that both genes were expressed during glycerol fermentation. The dhaF gene is transcribed together with the three structural genes coding for glycerol dehydratase (dhaBCE), whereas dhaG is coexpressed with the dhaT gene encoding 1,3-propanediol dehydrogenase. The dhaF and dhaG gene products were copurified to homogeneity from cell-free extracts of a recombinant E. coli strain producing both His6-tagged proteins. Both proteins formed a tight complex with an apparent molecular mass of 150 000 Da. The subunit structure of the native complex is probably alpha2beta2. The factor rapidly reactivated glycerol- or O2-inactivated hologlycerol dehydratase and activated the enzyme-cyanocobalamin complex in the presence of coenzyme B12, ATP, and Mg2+. The DhaF-DhaG complex and DhaF exhibited ATP-hydrolyzing activity, which was not directly linked to the reactivation of dehydratase. The purified DhaF-DhaG complex of C. freundii efficiently cross-activated the enzyme-cyanocobalamin complex and the glycerol-inactivated glycerol dehydratase of Klebsiella pneumoniae. It was not effective with respect to the glycerol dehydratase of Clostridium pasteurianum and to diol dehydratases of enteric bacteria.  相似文献   

10.
The three gldCDE genes from Lactobacillus diolivorans, that encode the three subunits of the glycerol dehydratase, were cloned and the proteins were co-expressed in soluble form in Escherichia coli with added sorbitol and betaine hydrochloride. The purified enzyme exists as a heterohexamer (α2β2γ2) structure with a native molecular mass of 210 kDa. It requires coenzyme B12 for catalytic activity and is subject to suicide inactivation by glycerol during catalysis. The enzyme had maximum activity at pH 8.6 and 37 °C. The apparent K m values for coenzyme B12, 1,2-ethanediol, 1,2-propanediol, and glycerol were 1.5 μM, 10.5 mM, 1.3 mM, and 5.8 mM, respectively. Together, these results indicated that the three genes gldCDE encoding the proteins make up a coenzyme B12-dependent diol dehydratase and not a glycerol dehydratase.  相似文献   

11.
Construction and Characterization of a 1,3-Propanediol Operon   总被引:19,自引:0,他引:19       下载免费PDF全文
The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions. These genes were reconfigured into an operon containing dhaB followed by dhaT under the control of a single promoter. The operon contains unique restriction sites to facilitate replacement of the promoter and other modifications. In a fed-batch cofermentation of glycerol and glucose, Escherichia coli containing the operon consumed 9.3 g of glycerol per liter and produced 6.3 g of 1,3-PD per liter. The fermentation had two distinct phases. In the first phase, significant cell growth occurred and the products were mainly 1,3-PD and acetate. In the second phase, very little growth occurred and the main products were 1,3-PD and pyruvate. The first enzyme in the 1,3-PD pathway, glycerol dehydratase, requires coenzyme B12, which must be provided in E. coli fermentations. However, the amount of coenzyme B12 needed was quite small, with 10 nM sufficient for good 1,3-PD production in batch cofermentations. 1,3-PD is a useful intermediate in the production of polyesters. The 1,3-PD operon was designed so that it can be readily modified for expression in other prokaryotic hosts; therefore, it is useful for metabolic engineering of 1,3-PD pathways from glycerol and other substrates such as glucose.  相似文献   

12.
As one of four key enzymes in glycerol dismutation process, 1,3-propanediol oxidoreductase (EC.1.1.1.202) is important in converting glycerol to 1,3-propanediol in Klebsiella pneumoniae. The dhaT gene encoding 1,3-propanediol oxidoreductase was amplified by polymerase chain reaction (PCR) using the genome DNA of K. pneumoniae as template, and then cloned into cloning vector pMD18-T. After DNA sequence was determined, the dhaT gene was subcloned into Escherichia coli expression vector pET-22b (+) and pET-28a (+). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that both the recombinant E. coli BL21 (DE3) (pET-22b (+)-dhaT) and E. coli BL21(DE3)(pET-28a (+)-dhaT) expressed predicted 42-kDa 1,3-propanediol oxidoreductase after induced by isopropyl-β-d-thiogalactopyranoside (IPTG), and the recombinant enzyme of E. coli BL21 (DE3) (pET-28a (+)-dhaT) was mostly in soluble form, and exhibited high activity (96.8 U/mL culture). The recombinant enzyme was purified and biochemically characterized. The apparent K m values of the enzyme for 1,3-propanediol and NAD+ were 8.5 and 0.21 mM, respectively. The enzyme had maximum activity at pH 9.5 and 30°C.  相似文献   

13.
Adenosylcobalamin-dependent glycerol and diol dehydratases undergo inactivation by the physiological substrate glycerol during catalysis. In the permeabilized cells of Klebsiella pneumoniae, Klebsiella oxytoca, and recombinant Escherichia coli, glycerol-inactivated glycerol dehydratase and diol dehydratase are reactivated by their respective reactivating factors in the presence of ATP, Mg2+, and adenosylcobalamin. Both of the reactivating factors consist of two subunits. To examine the specificities of the reactivating factors, their genes or their hybrid genes were co-expressed with dehydratase genes in E. coli cells in various combinations. The reactivating factor of K. oxytoca for diol dehydratase efficiently cross-reactivated the inactivated glycerol dehydratase, whereas the reactivating factor of K. pneumoniae for glycerol dehydratase hardly cross-reactivated the inactivated diol dehydratase. Both of the two hybrid reactivating factors rapidly reactivated the inactivated glycerol dehydratase. In contrast, the hybrid reactivating factor containing the large subunit of the glycerol dehydratase reactivating factor hardly reactivated the inactivated diol dehydratase. These results indicate that the glycerol dehydratase reactivating factor is much more specific for the dehydratase partner than the diol dehydratase reactivating factor and that a large subunit of the reactivating factors principally determines the specificity for a dehydratase.  相似文献   

14.
Klebsiella pneumoniae ATCC 25955 (formerly named Aerobacter aerogenes PZH 572, Warsaw), which is known to produce coenzyme-B12-dependent glycerol dehydratase when grown anaerobically in a glycerol medium, formed coenzyme-B12-dependent diol dehydratase in a 1,2-propanediol-containing medium. Both the diol dehydratase and the glycerol dehydratase produced by the organism catalyzed the conversion of glycerol, 1,2-propanediol and 1,2-ethanediol to the corresponding aldehydes and underwent concomitant inactivation during the catalysis of glycerol dehydration, as does the diol dehydratase of K. pneumoniae (A. aerogenes) ATCC 8724. However, the two enzymes were distinguishable from each other by the monovalent-cation-selectivity pattern and by substrate specificity; that is, glycerol dehydratase preferred glycerol to 1,2-propanediol as a substrate, whereas diol dehydratase preferred 1,2-propanediol to glycerol, as judged from initial velocity studies. Ouchterlony double-diffusion analysis and immunochemical titration with rabbit antiserum against diol dehydratase of K. pneumoniae ATCC 8724 established clearly that the diol dehydratase of K. pneumoniae ATCC 25955 is immunologically similar to that of K. pneumoniae ATCC 8724, while the glycerol dehydratase of the former is different from the diol dehydratase of both strains. Both the enzymes were found to be distributed in several bacteria of the family Enterobacteriaceae.  相似文献   

15.
Microbial fermentation under strictly anaerobic conditions has been conventionally used for the production of 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate (PTT) and other polyester fibers. In the current study, we have identified eight strains of microorganism which are able to produce 1,3-propanediol under aerobic condition. Those strains were isolated from garden soil, which were enriched by culturing in LB medium with glycerol added under aerobic condition. The identities of those strains were established based on their 16S rRNA sequences and physiological characteristics. Results indicated 6 strains are Citrobacter freundii and 2 strains are Klebsiella pneumoniae subsp Penumoniae. One of Klebsiella pneumoniae subsp Penumoniae strains, designated as TUAC01, demonstrated comparable levels of 1,3-propanediol oxidoreductase, glycerol dehydratase and glycerol dehydrogenase activity to the anaerobic microorganisms described in the literature. Accordingly, in larger scales (5 l) fed-batch culture the TUAC01 strain showed a remarkable 1,3-propanediol producing potency under aerobic conditions. 60.1 g/l of 1,3-propanediol was yield after 42 h incubation in an agitating bioreactor; and in air-lift bioreactor 66.3 g/l of 1,3-propanediol was yield after 58.5 h incubation. The aerobic ferment process, reduced the product cost and made the biological method of 1,3-propanediol production more attractive.  相似文献   

16.
Coenzyme B12-dependent diol and glycerol dehydratases are isofunctional enzymes, which catalyze dehydration of 1, 2-diols to produce corresponding aldehydes. Although the two types of dehydratases have high sequence homology, glycerol dehydratase is a soluble cytosolic enzyme, whereas diol dehydratase is a low-solubility enzyme associated with carboxysome-like polyhedral organelles. Since both the N-terminal 20 and 16 amino acid residues of the β and γ subunits, respectively, are indispensable for the low solubility of diol dehydratase, we constructed glycerol dehydratase-based chimeric enzymes which carried N-terminal portions of the β and γ subunits of diol dehydratase in the corresponding subunits of glycerol dehydratase. Addition of the diol dehydratase-specific N-terminal 34 and 33 amino acid residues of the β and γ subunits, respectively, was not enough to lower the solubility of glycerol dehydratase. A chimeric enzyme which carries the low homology region (residues 35–60) of the diol dehydratase β subunit in addition to the diol dehydratase-specific extra-regions of β and γ subunits showed low solubility comparable to diol dehydratase, although its hydropathy plot does not show any prominent hydrophobic peaks in these regions. It was thus concluded that short N-terminal sequences are sufficient to change the solubility of the enzyme.  相似文献   

17.
2-Butanone is an important commodity chemical of wide application in different areas. In this study, Klebsiella pneumoniae was engineered to directly produce 2-butanone from glucose by extending its native 2, 3-butanediol synthesis pathway. To identify the potential enzyme for the efficient conversion of 2, 3-butanediol to 2-butanone, we screened different glycerol dehydratases and diol dehydratases. By introducing the diol dehydratase from Lactobacillus brevis and deleting the ldhA gene encoding lactate dehydrogenase, the engineered K. pneumoniae was able to accumulate 246 mg/L of 2-butanone in shake flask. With further optimization of culture condition, the titer of 2-butanone was increased to 450 mg/L. This study lays the basis for developing an efficient biological process for 2-butanone production.  相似文献   

18.
The conversion of glycerol to 1,3-propanediol by Citrobacter freundii DSM 30040 was optimized in single- and two-stage continuous cultures. The productivity of 1,3-propanediol formation was highest under glycerol limitation and increased with the dilution rate (D) to a maximum of 3.7 g·l–1·h–1. Glycerol dehydratase seemed to be the rate-limiting step in 1,3-propanediol formation. Conditions for the two-stage fermentation process were as follows: first stage, glycerol limitation (250mM), pH 7.2, D=0.1 h, 31° C; second stage, additional glycerol, pH 6.6, D=0.05 h–1, 28° C. Under these conditions 875mM glycerol were consumed, the final 1,3-propanediol concentration was 545mM, and the overall productivity 1.38 g·1–1·h–1. Correspondence to: G. Gottschalk  相似文献   

19.
The genes encoding glycerol dehydratase were cloned and characterized by genomic DNA from Klebsiella pneumoniae XJPD-Li, and the assigned accession number EF634063 was available from the GenBank database. The DNA sequence analysis showed that the clone included three ORFs (dhaB, dhaC and dhaE, encoding α, β and γ subunit of glycerol dehydratase, respectively). Among three subunits of glycerol dehydratase, amino acid residues H13, S193, N359, E407, and M515 of α subunit, N47, L150, V189 of β subunit are different with what had been reported. Subsequently, the expression vector was constructed and transformed into E. coli BL21, and the colony carried genes of glycerol dehydratase were selected. SDS-PAGE examination showed that the three subunits were well expressed. The specific activity of recombined glycerol dehydratase reached to 0.299 U mg?1, which was about 3 times comparing with that of the wild strain. The research also displayed that both glycerol and O2 could inactive the glycerol dehydratase expressed in E. coli quickly in 10 min. The inactivated glycerol dehydratase could be effectively reactivated under the system as follows: the concentration of ATP, Mg2+ and coenzyme B12 were 50 mM, 10 mM and 3 μM, respectively, when the ratio (W/W) of glycerol dehydratase to reactivation factor was 4:1. The O2-inactivated and glycerol-inactivated dehydratase could be reactivated to 97.3% and 98.9% of initial activity in 10 min in above-mentioned conditions, respectively. The reactivation factor together with ATP was considered as the “ON/OFF” reactivating condition.  相似文献   

20.
Diol dehydratase (1,2-propanediol hydro-lyase, EC 4.2.1.28) and glycerol dehydratase (glycerol hydro-lyase, EC 4.2.1.30) are shown to be distinct, separable enzymes that occur individually or together in different strains of Klebsiella sp. Anaerobic growth with propan-1,2-diol induces diol dehydratase alone, whereas glycerol fermentation induces both enzymes in K. pneumoniae ATCC 25955 and in Citrobacter freundii NCIB 3735. The dehydratases can be resolved by polyacrylamide-gel electrophoresis or separated by anion-exchange chromatography alone. Sucrose density gradient centrifugation failed to distinguish the enzymes and indicated a molecular weight of 1.9 . 10(5) for both. The enzymes can be assayed individually, even when present in the same crude extract, using the 67-fold difference in their Km values for coenzyme B-12. For both enzymes inactivation kinetics are observed with glycerol as substrated, and monovalent cations influence both the inactivation rate and catalytic rate of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号