首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to its high theoretical specific capacity (1166 mA h g?1) and particularly its advantage to be paired with a lithium‐metal‐free anode, lithium sulfide (Li2S) is regarded as a much safer cathode for next‐generation advanced lithium–sulfur (Li–S) batteries. However, the low conductivity of Li2S and particularly the severe “polysulfide shuttle” of lithium polysulfide (LiPS) dramatically hinder their practical application in Li–S batteries. To address such issues, herein a bifuctional 3D metal sulfide‐decorated carbon sponge (3DTSC), which is constructed by 1D carbon nanowires cross‐linked with 2D graphene nanosheets with high conductivity and polar 0D metal sulfide nanodots with efficient electrocatalytic activity and strong chemical adsorption capability for LiPSs, is presented. Benefiting from the well‐designed multiscale, multidimensional 3D porous nanoarchitecture with high conductivity, and efficient electrocatalytic and absorption ability, the 3DTSC significantly mitigates LiPS shuttle, improves the utilization of Li2S, and facilitates the transport of electrons and ions. As a result, even with a high Li2S loading of 8 mg cm?2, the freestanding 3DTSC‐Li2S cathode without a polymer binder and metallic current collector delivers outstanding electrochemical performance with a high areal capacity of 8.44 mA h cm?2.  相似文献   

2.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

3.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

4.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

5.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

6.
Herein, a composite polymer electrolyte with a viscoelastic and nonflammable interface is designed to handle the contact issue and preclude Li dendrite formation. The composite polymer electrolyte (cellulose acetate/polyethylene glycol/Li1.4Al0.4Ti1.6P3O12) exhibits a wide electrochemical window of 5 V (vs Li+/Li), a high Li+ transference number of 0.61, and an excellent ionic conductivity of above 10?4 S cm?1 at 60 °C. In particular, the intimate contact, low interfacial impedance, and fast ion‐transport process between the electrodes and solid electrolytes can be simultaneously achieved by the viscoelastic and nonflammable layer. Benefiting from this novel design, solid lithium metal batteries with either LiFePO4 or LiCoO2 as cathode exhibit superior cyclability and rate capability, such as a discharge capacity of 157 mA h g?1 after 100 cycles at C/2 and 97 mA h g?1 at 5C for LiFePO4 cathode. Moreover, the smooth and uniform Li surface after long‐term cycling confirms the successful suppression of dendrite formation. The viscoelastic and nonflammable interface modification of solid electrolytes provides a promising and general strategy to handle the interfacial issues and improves the operative safety of solid lithium metal batteries.  相似文献   

7.
Li2S is a fully lithiated sulfur‐based cathode with a high theoretical capacity of 1166 mAh g?1 that can be coupled with lithium‐free anodes to develop high‐energy‐density lithium–sulfur batteries. Although various approaches have been pursued to obtain a high‐performance Li2S cathode, there are still formidable challenges with it (e.g., low conductivity, high overpotential, and irreversible polysulfide diffusion) and associated fabrication processes (e.g., insufficient Li2S, excess electrolyte, and low reversible capacity), which have prevented the realization of high electrochemical utilization and stability. Here, a new cathode design composed of a homogeneous Li2S‐TiS2‐electrolyte composite that is prepared by a simple two‐step dry/wet‐mixing process is demonstrated, allowing the liquid electrolyte to wet the powder mixture consisting of insulating Li2S and conductive TiS2. The close‐contact, three‐phase boundary of this system improves the Li2S‐activation efficiency and provides fast redox‐reaction kinetics, enabling the Li2S‐TiS2‐electrolyte cathode to attain stable cyclability at C/7 to C/3 rates, superior long‐term cyclability over 500 cycles, and promising high‐rate performance up to 1C rate. More importantly, this improved performance results from a cell design attaining a high Li2S loading of 6 mg cm?2, a high Li2S content of 75 wt%, and a low electrolyte/Li2S ratio of 6.  相似文献   

8.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

9.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

10.
As the theoretical limit of intercalation material‐based lithium‐ion batteries is approached, alternative chemistries based on conversion reactions are presently considered. The conversion of sulfur is particularly appealing as it is associated with a theoretical gravimetric energy density up to 2510 Wh kg?1. In this paper, three different carbon‐iron disulfide‐sulfur (C‐FeS2‐S) composites are proposed as alternative positive electrode materials for all‐solid‐state lithium‐sulfur batteries. These are synthesized through a facile, low‐cost, single‐step ball‐milling procedure. It is found that the crystalline structure (evaluated by X‐ray diffraction) and the morphology of the composites (evaluated by scanning electron microscopy) are greatly influenced by the FeS2:S ratio. Li/LiI‐Li3PS4/C‐FeS2‐S solid‐state cells are tested under galvanostatic conditions, while differential capacity plots are used to discuss the peculiar electrochemical features of these novel materials. These cells deliver capacities as high as 1200 mAh g(FeS2+S)?1 at the intermediate loading of 1 mg cm?2 (1.2 mAh cm?2), and up to 3.55 mAh cm?2 for active material loadings as high as 5 mg cm?2 at 20 °C. Such an excellent performance, rarely reported for (sulfur/metal sulfide)‐based, all solid‐state cells, makes these composites highly promising for real application where high positive electrode loadings are required.  相似文献   

11.
Driven by increasing demand for high‐energy‐density batteries for consumer electronics and electric vehicles, substantial progress is achieved in the development of long‐life lithium–sulfur (Li–S) batteries. Less attention is given to Li–S batteries with high volume energy density, which is crucial for applications in compact space. Here, a series of elastic sandwich‐structured cathode materials consisting of alternating VS2‐attached reduced graphene oxide (rGO) sheets and active sulfur layers are reported. Due to the high polarity and conductivity of VS2, a small amount of VS2 can suppress the shuttle effect of polysulfides and improve the redox kinetics of sulfur species in the whole sulfur layer. Sandwich‐structured rGO–VS2/S composites exhibit significantly improved electrochemical performance, with high discharge capacities, low polarization, and excellent cycling stability compared with their bare rGO/S counterparts. Impressively, the tap density of rGO–VS2/S with 89 wt% sulfur loading is 1.84 g cm?3, which is almost three times higher than that of rGO/S with the same sulfur content (0.63 g cm?3), and the volumetric specific capacity of the whole cell is as high as 1182.1 mA h cm?3, comparable with the state‐of‐the‐art reported for energy storage devices, demonstrating the potential for application of these composites in long‐life and high‐energy‐density Li–S batteries.  相似文献   

12.
A rechargeable battery that uses sulfur at the cathode and a metal (e.g., Li, Na, Mg, or Al) at the anode provides perhaps the most promising path to a solid‐state, rechargeable electrochemical storage device capable of high charge storage capacity. It is understood that solubilization in the electrolyte and loss of sulfur in the form of long‐chain lithium polysulfides (Li2Sx, 2 < x < 8) has hindered development of the most studied of these devices, the rechargeable Li‐S battery. Beginning with density‐functional calculations of the structure and interactions of a generic lithium polysulfide species with nitrile containing molecules, it is shown that it is possible to design nitrile‐rich molecular sorbents that anchor to other components in a sulfur cathode and which exert high‐enough binding affinity to Li2Sx to limit its loss to the electrolyte. It is found that sorbents based on amines and imidazolium chloride present barriers to dissolution of long‐chain Li2Sx and that introduction of as little as 2 wt% of these molecules to a physical sulfur‐carbon blend leads to Li‐S battery cathodes that exhibit stable long‐term cycling behaviors at high and low charge/discharge rates.  相似文献   

13.
Lithium–sulfur batteries (LSBs) are currently considered as promising candidates for next‐generation energy storage technologies. However, their practical application is hindered by the critical issue of the polysulfide‐shuttle. Herein, a metal organic framework (MOF)‐derived solid electrolyte is presented to address it. The MOF solid electrolyte is developed based on a Universitetet i Oslo (UIO) structure. By grafting a lithium sulfonate (‐SO3Li) group to the UIO ligand, both the ionic conductivity and the polysulfide‐suppression capability of the resulting ‐SO3Li grafted UIO (UIOSLi) solid electrolyte are greatly improved. After integrating a Li‐based ionic liquid (Li‐IL), lithium bis(trifluoromethanesulfonyl)imide in 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, the resulting Li‐IL/UIOSLi solid electrolyte exhibits an ionic conductivity of 3.3 × 10?4 S cm?1 at room temperature. Based on its unique structure, the Li‐IL/UIOSLi solid electrolyte effectively restrains the polysulfide shuttle and suppresses lithium dendritic growth. Lithium–sulfur cells with the Li‐IL/UIOSLi solid electrolyte and a Li2S6 catholyte show stable cycling performance that preserves 84% of the initial capacity after 250 cycles with a capacity‐fade rate of 0.06% per cycle.  相似文献   

14.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

15.
Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g?1 after 200 cycles at 0.5 C and 639 mAh g?1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm?2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm?2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts.  相似文献   

16.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

17.
Although metallic lithium is regarded as the “Holy Grail” for next‐generation rechargeable batteries due to its high theoretical capacity and low overpotential, the uncontrollable Li dendrite growth, especially under high current densities and deep plating/striping, has inhibited its practical application. Herein, a 3D‐printed, vertically aligned Li anode (3DP‐VALi) is shown to efficiently guide Li deposition via a “nucleation within microchannel walls” process, enabling a high‐performance, dendrite‐free Li anode. Moreover, the microchannels within the microwalls are beneficial for promoting fast Li+ diffusion, supplying large space for the accommodation of Li during the plating/stripping process. The high‐surface‐area 3D anode design enables high operating current densities and high areal capacities. As a result, the Li–Li symmetric cells using 3DP‐VALi demonstrate excellent electrochemical performances as high as 10 mA cm?2/10 mAh cm?2 for 1500 h and 5 mA cm?2/20 mAh cm?2 for 400 h, respectively. Additionally, the Li–S and Li–LiFePO4 cells using 3DP‐VALi anodes present excellent cycling stability up to 250 and 800 cycles at a rate of 1 C, respectively. It is believed that these new findings could open a new window for dendrite‐free metal anode design and pave the way toward energy storage devices with high energy/power density.  相似文献   

18.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

19.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   

20.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm?2 and stable electrodeposition capabilities of 4 mAh cm?2 at an ultrahigh current density of 4 mA cm?2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号