首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3D printing approach is first developed to fabricate quasi‐solid‐state asymmetric micro‐supercapacitors to simultaneously realize the efficient patterning and ultrahigh areal energy density. Typically, cathode, anode, and electrolyte inks with high viscosities and shear‐thinning rheological behaviors are first prepared and 3D printed individually on the substrates. The 3D printed asymmetric micro‐supercapacitor with interdigitated electrodes exhibits excellent structural integrity, a large areal mass loading of 3.1 mg cm?2, and a wide electrochemical potential window of 1.6 V. Consequently, this 3D printed asymmetric micro‐supercapacitor displays an ultrahigh areal capacitance of 207.9 mF cm?2. More importantly, an areal energy density of 73.9 µWh cm?2 is obtained, superior to most reported interdigitated micro‐supercapacitors. It is believed that the efficient 3D printing strategy can be used to construct various asymmetric micro‐supercapacitors to promote the integration in on‐chip energy storage systems.  相似文献   

2.
While stretchable micro‐supercapacitors (MSCs) have been realized, they have suffered from limited areal electrochemical performance, thus greatly restricting their practical electronic application. Herein, a facile strategy of 3D printing and unidirectional freezing of a pseudoplastic nanocomposite gel composed of Ti3C2Tx MXene nanosheets, manganese dioxide nanowire, silver nanowires, and fullerene to construct intrinsically stretchable MSCs with thick and honeycomb‐like porous interdigitated electrodes is introduced. The unique architecture utilizes thick electrodes and a 3D porous conductive scaffold in conjunction with interacting material properties to achieve higher loading of active materials, larger interfacial area, and faster ion transport for significantly improved areal energy and power density. Moreover, the oriented cellular scaffold with fullerene‐induced slippage cell wall structure prompts the printed electrode to withstand large deformations without breaking or exhibiting obvious performance degradation. When imbued with a polymer gel electrolyte, the 3D‐printed MSC achieves an unprecedented areal capacitance of 216.2 mF cm?2 at a scan rate of 10 mV s?1, and remains stable when stretched up to 50% and after 1000 stretch/release cycles. This intrinsically stretchable MSC also exhibits high rate capability and outstanding areal energy density of 19.2 µWh cm?2 and power density of 58.3 mW cm?2, outperforming all reported stretchable MSCs.  相似文献   

3.
Developing advanced supercapacitors with both high areal and volumetric energy densities remains challenging. In this work, self‐supported, compact carbon composite electrodes are designed with tunable thickness using 3D printing technology for high‐energy‐density supercapacitors. The 3D carbon composite electrodes are composed of the closely stacked and aligned active carbon/carbon nanotube/reduced graphene oxide (AC/CNT/rGO) composite filaments. The AC microparticles are uniformly embedded in the wrinkled CNT/rGO conductive networks without using polymer binders, which contributes to the formation of abundant open and hierarchical pores. The 3D‐printed ultrathick AC/CNT/rGO composite electrode (ten layers) features high areal and volumetric mass loadings of 56.9 mg cm?2 and 256.3 mg cm?3, respectively. The symmetric cell assembled with the 3D‐printed thin GO separator and ultrathick AC/CNT/rGO electrodes can possess both high areal and volumetric capacitances of 4.56 F cm?2 and 10.28 F cm?3, respectively. Correspondingly, the assembled ultrathick and compact symmetric cell achieves high areal and volumetric energy densities of 0.63 mWh cm?2 and 1.43 mWh cm?3, respectively. The all‐component extrusion‐based 3D printing offers a promising strategy for the fabrication of multiscale and multidimensional structures of various high‐energy‐density electrochemical energy storage devices.  相似文献   

4.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

5.
Here, a simple active materials synthesis method is presented that boosts electrode performance and utilizes a facile screen‐printing technique to prepare scalable patterned flexible supercapacitors based on manganese hexacyanoferrate‐manganese oxide and electrochemically reduced graphene oxide electrode materials (MnHCF‐MnOx/ErGO). A very simple in situ self‐reaction method is developed to introduce MnOx pseudocapacitor material into the MnHCF system by using NH4F. This MnHCF‐MnOx electrode materials can deliver excellent capacitance of 467 F g?1 at a current density of 1 A g?1, which is a 2.4 times capacitance increase compared to MnHCF. In addition a printed, patterned, flexible MnHCF‐MnOx/ErGO supercapacitor is fabricated, showing a remarkable areal capacitance of 16.8 mF cm?2 and considerable energy and power density of 0.5 mWh cm?2 and 0.0023 mW cm?2, respectively. Furthermore, the printed patterned flexible supercapacitors also exhibit exceptional flexibility, and the capacitance remains stable, even while bending to various angles (60°, 90°, and 180°) and for 100 cycles. The flexible supercapacitor arrays integrated by multiple prepared single supercapacitors can power various LEDs even in the bent states. This approach offers promising opportunities for the development of printable energy storage materials and devices with high energy density, large scalability, and excellent flexibility.  相似文献   

6.
3D printing is becoming an efficient approach to facilely and accurately fabricate diverse complex architectures with broad applications. However, suitable inks and 3D print favorable architectures with high electrochemical performances for energy storage are still being explored. Here, sulfur copolymer‐graphene architectures with well‐designed periodic microlattices are 3D printed as a cathode for Li‐S batteries using a suitable ink composed of sulfur particles, 1,3‐diisopropenylbenzene (DIB), and condensed graphene oxide dispersion. Using thermal treatment, elemental sulfur can be reacted with DIB to produce sulfur copolymer, which can partially suppress the dissolution of polysulfides. Moreover, graphene in the architecture can provide high electrical conductivity for whole electrode. Hence, 3D printed sulfur copolymer‐graphene architecture exhibits a high reversible capacity of 812.8 mA h g?1 and good cycle performance. Such a simple 3D printing approach can be further extended to construct many complex architectures for various energy storage devices.  相似文献   

7.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   

8.
Printed batteries are an emerging solution for integrated energy storage using low‐cost, high accuracy fabrication techniques. While several printed batteries have been previously shown, few have designed a battery that can be incorporated into an integrated device. Specifically, a fully printed battery with a small active electrode area (<1 cm2) achieving high areal capacities (>10 mAh cm?2) at high current densities (1–10 mA cm?2) has not been demonstrated, which represents the minimum form‐factor and performance requirements for many low‐power device applications. This work addresses these challenges by investigating the scaling limits of a fully printed Zn–Ag2O battery and determining the electrochemical limitations for a mm2‐scale battery. Processed entirely in air, Zn–Ag2O batteries are well suited for integration in typical semiconductor packaging flows compared to lithium‐based chemistries. Printed cells with electrodes as small as 1 mm2 maintain steady operating voltages above (>1.4 V) at high current densities (1–12 mA cm?2) and achieve the highest reported areal capacity for a fully printed battery at 11 mAh cm?2. The findings represent the first demonstration of a small, packaged, fully printed Zn–Ag2O battery with high areal capacities at high current densities, a crucial step toward realizing chip‐scale energy storage for integrated electronic systems.  相似文献   

9.
Crumpled nitrogen‐doped MXene nanosheets with strong physical and chemical coadsorption of polysulfides are synthesized by a novel one‐step approach and then utilized as a new sulfur host for lithium–sulfur batteries. The nitrogen‐doping strategy enables introduction of heteroatoms into MXene nanosheets and simultaneously induces a well‐defined porous structure, high surface area, and large pore volume. The as‐prepared nitrogen‐doped MXene nanosheets have a strong capability of physical and chemical dual‐adsorption for polysulfides and achieve a high areal sulfur loading of 5.1 mg cm–2. Lithium–sulfur batteries, based on crumpled nitrogen‐doped MXene nanosheets/sulfur composites, demonstrate outstanding electrochemical performances, including a high reversible capacity (1144 mA h g–1 at 0.2C rate) and an extended cycling stability (610 mA h g–1 at 2C after 1000 cycles).  相似文献   

10.
Although metallic lithium is regarded as the “Holy Grail” for next‐generation rechargeable batteries due to its high theoretical capacity and low overpotential, the uncontrollable Li dendrite growth, especially under high current densities and deep plating/striping, has inhibited its practical application. Herein, a 3D‐printed, vertically aligned Li anode (3DP‐VALi) is shown to efficiently guide Li deposition via a “nucleation within microchannel walls” process, enabling a high‐performance, dendrite‐free Li anode. Moreover, the microchannels within the microwalls are beneficial for promoting fast Li+ diffusion, supplying large space for the accommodation of Li during the plating/stripping process. The high‐surface‐area 3D anode design enables high operating current densities and high areal capacities. As a result, the Li–Li symmetric cells using 3DP‐VALi demonstrate excellent electrochemical performances as high as 10 mA cm?2/10 mAh cm?2 for 1500 h and 5 mA cm?2/20 mAh cm?2 for 400 h, respectively. Additionally, the Li–S and Li–LiFePO4 cells using 3DP‐VALi anodes present excellent cycling stability up to 250 and 800 cycles at a rate of 1 C, respectively. It is believed that these new findings could open a new window for dendrite‐free metal anode design and pave the way toward energy storage devices with high energy/power density.  相似文献   

11.
2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high‐rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all‐pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene‐based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton‐induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm?2 at a power density of 40 mW cm?2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon‐based materials in asymmetric electrochemical capacitors, leading to an increased energy density.  相似文献   

12.
In this work, a simple lignin‐based laser lithography technique is developed and used to fabricate on‐chip microsupercapacitors (MSCs) using 3D graphene electrodes. Specifically, lignin films are transformed directly into 3D laser‐scribed graphene (LSG) electrodes by a simple one‐step CO2 laser irradiation. This step is followed by a water lift‐off process to remove unexposed lignin, resulting in 3D graphene with the designed electrode patterns. The resulting LSG electrodes are hierarchically porous, electrically conductive (conductivity is up to 66.2 S cm?1), and have a high specific surface area (338.3 m2 g?1). These characteristics mean that such electrodes can be used directly as MSC electrodes without the need for binders and current collectors. The MSCs fabricated using lignin laser lithography exhibit good electrochemical performances, namely, high areal capacitance (25.1 mF cm?2), high volumetric energy density (≈1 mWh cm?3), and high volumetric power density (≈2 W cm?3). The versatility of lignin laser lithography opens up the opportunity in applications such as on‐chip microsupercapacitors, sensors, and flexible electronics at large‐scale production.  相似文献   

13.
Advanced 2D materials have spurred great interest as a new paradigm in pursuing improved energy storage performance. Herein, for the first time, antimonene is utilized as an effective active component for constructing highly deformable and editable freestanding film electrodes, as the basis of a supercapacitor with record‐breaking electrode performance. The insertion of antimonene is able to improve the environmental stability of the antimonene/MXene composite electrode and remarkably enhance the energy storage capability in both protic and neutral electrolytes. Notably, an ultrahigh specific volumetric capacitance of 4255 F cm?3 is achieved by the electrode tested in a1 m H2SO4 electrolyte, which represents the state‐of‐the‐art value reported to date for supercapacitor electrodes based on MXenes. The flexible supercapacitors constructed by the composite electrode, also demonstrate highly competitive energy and power densities: 459.75 mWh cm?3 and 3.12 W cm?3 for the asymmetrical one with a much widened potential window of 2 V in neutral electrolyte; 112.52 mWh cm?3 and 1 W cm?3 for the symmetrical configuration with an outstanding capacitance of 1265 F cm?3 in acidic media. This work sheds new light on the fabrication of high‐performance supercapacitor electrodes with functionalities in different electrolyte media and various device configurations.  相似文献   

14.
Pseudocapacitance is a key charge storage mechanism to advanced electrochemical energy storage devices distinguished by the simultaneous achievement of high capacitance and a high charge/discharge rate by using surface redox chemistries. MXene, a family of layered compounds, is a pseudocapacitor‐like electrode material which exhibits charge storage through exceptionally fast ion accessibility to redox sites. Here, the authors demonstrate steric chloride termination in MXene Ti2CTx (Tx : surface termination groups) to open the interlayer space between the individual 2D Ti2CTx units. The open interlayer space significantly enhances Li‐ion accessibility, leading to high gravimetric and volumetric capacitances (300 F g?1 and 130 F cm?3) with less diffusion limitation. A Li‐ion hybrid capacitor consisting of the Ti2CTx negative electrode and the LiNi1/3Co1/3Mn1/3O2 positive electrode displays an unprecedented specific energy density of 160 W h kg?1 at 220 W kg?1 based on the total weight of positive and negative active materials.  相似文献   

15.
Conductive 2D metal–organic frameworks (MOFs) have merits beyond traditional MOFs for electrochemical applications, but reports on using MOFs as electrodes for electrochemical microsupercapacitors (MSCs) are practically non‐existent. In this work, a Ni‐catecholate‐based MOF (Ni‐CAT MOF) having good conductivity and exhibiting redox chemistry in the positive and negative voltage windows is developed. A novel process is developed to selectively grow the conductive Ni‐CAT MOF on 3D laser scribed graphene (LSG). The LSG with its superior wettability serves as a functional matrix‐current collector for the hybridization of conductive Ni‐CAT MOF nanocrystals. Impressively, MSCs fabricated using the hybrid LSG/Ni‐CAT MOF show significant improvement compared with MOF‐free LSG electrodes. Specifically, the LSG/Ni‐CAT MOF electrodes can deliver MSCs with a wide operating voltage (1.4 V), high areal capacitance (15.2 mF cm?2), energy density (4.1 µWh cm?2), power density (7 mW cm?2), good rate performance, and decent cycling stability. This work opens up an avenue for developing electrochemical microsupercapacitors using conductive MOF electrodes.  相似文献   

16.
A simple and scalable direct laser machining process to fabricate MXene‐on‐paper coplanar microsupercapacitors is reported. Commercially available printing paper is employed as a platform in order to coat either hydrofluoric acid‐etched or clay‐like 2D Ti3C2 MXene sheets, followed by laser machining to fabricate thick‐film MXene coplanar electrodes over a large area. The size, morphology, and conductivity of the 2D MXene sheets are found to strongly affect the electrochemical performance due to the efficiency of the ion‐electron kinetics within the layered MXene sheets. The areal performance metrics of Ti3C2 MXene‐on‐paper microsupercapacitors show very competitive power‐energy densities, comparable to the reported state‐of‐the‐art paper‐based microsupercapacitors. Various device architectures are fabricated using the MXene‐on‐paper electrodes and successfully demonstrated as a micropower source for light emitting diodes. The MXene‐on‐paper electrodes show promise for flexible on‐paper energy storage devices.  相似文献   

17.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

18.
While several stretchable batteries utilizing either deterministic or random composite architectures have been described, none have been fabricated using inexpensive printing technologies. In this study, the authors printed a highly stretchable, zinc‐silver oxide (Zn‐Ag2O) battery by incorporating polystyrene‐block ‐polyisoprene‐block ‐polystyrene (SIS) as a hyperelastic binder for custom‐made printable inks. The remarkable mechanical properties of the SIS binder lead to an all‐printed, stretchable Zn‐Ag2O rechargeable battery with a ≈2.5 mA h cm?2 reversible capacity density even after multiple iterations of 100% stretching. This battery offers the highest reversible capacity and discharge current density for intrinsically stretchable batteries reported to date. The electrochemical and mechanical properties are characterized under different strain conditions. The new stress‐enduring printable inks pave ways for further developing stretchable electronics for the wide range of wearable applications.  相似文献   

19.
The pursuit of new categories of active materials as electrodes of supercapacitors remains a great challenge. Herein, for the first time, elemental boron as a superior electrode material of supercapacitors is reported, which exhibits significantly high capacitances and excellent rate performance in all alkaline, neutral, and acidic electrolytes. Notably, boron nanowire‐carbon fiber cloth (BNWs‐CFC) electrodes achieve a capacitance up to 42.8 mF cm?2 at a scan rate of 5 mV s?1 and 60.2 mF cm?2 at a current density of 0.2 mA cm?2 in the acidic electrolyte. Moreover, in all these three kinds of electrolytes, BNWs‐CFC electrodes demonstrate a decent cycling stability with >80% capacitance retention after 8000 charging/discharging cycles. The Dominating energy storage mechanism of BNWs in the different electrolytes is analyzed by looking into the kinetics of the electrochemical process. Subsequently, the BNWs‐CFC electrode is used to fabricate a flexible solid‐state supercapacitor, which reveals a specific capacitance up to 22.73 mF cm?2 and good mechanical performance after 1000 bending cycles. This study opens a new avenue to explore elemental boron‐based new nanomaterials for the application of energy storage with superior electrochemical performance.  相似文献   

20.
Though polypyrrole (PPy) is widely used in flexible supercapacitors owing to its high electrochemical activity and intrinsic flexibility, limited capacitance and cycling stability of freestanding PPy films greatly reduce their practicality in real‐world applications. Herein, we report a new approach to enhance PPy's capacitance and cycling stability by forming a freestanding and conductive hybrid film through intercalating PPy into layered Ti3C2 (l‐Ti3C2, a MXene material). The capacitance increases from 150 (300) to 203 mF cm?2 (406 F cm?3). Moreover, almost 100% capacitance retention is achieved, even after 20 000 charging/discharging cycles. The analyses reveal that l‐Ti3C2 effectively prevents dense PPy stacking, benefiting the electrolyte infiltration. Furthermore, strong bonds, formed between the PPy backbones and surfaces of l‐Ti3C2, not only ensure good conductivity and provide precise pathways for charge‐carrier transport but also improve the structural stability of PPy backbones. The freestanding PPy/l‐Ti3C2 film is further used to fabricate an ultra‐thin all‐solid‐state supercapacitor, which shows an excellent capacitance (35 mF cm?2), stable performance at any bending state and during 10 000 charging/discharging cycles. This novel strategy provides a new way to design conductive polymer‐based freestanding flexible electrodes with greatly improved electrochemical performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号