首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium‐based energy storage devices (PESDs) are promising candidates for large‐scale energy storage applications owing to potassiums abundant in nature, the low standard redox potential (?2.93 V for K/K+ vs the standard hydrogen electrode) of potassium (K), and high ionic conductivity of K‐ion based electrolytes. However, lack of proper cathode and anode materials hinder practical applications of PESDs. In this work, carbon nanosheets doped with an ultrahigh content of nitrogen (22.7 at%) are successfully synthesized as an anode material for a K‐ion battery, which delivers a high capacity of 410 mAh g?1 at a current density of 500 mA g?1, which is the best result among the carbon based anodes for PESDs. Moreover, the battery exhibits an excellent cycling performance with a capacity retention of 70% after 3000 cycles at a high current density of 5 A g?1. In situ Raman, galvanostatic intermittent titration, and density functional theory calculations reveal that the ultrahigh N‐doped carbon nanosheet (UNCN) simultaneously combines the diffusion and pseudocapacitive mechanisms together, which remarkably improves its electrochemical performances in K‐ion storage. These results demonstrate the good potential of UNCNs as a high‐performance anode for PESDs.  相似文献   

2.
Potassium‐ion batteries (PIBs) are promising energy storage systems because of the abundance and low cost of potassium. The formidable challenge is to develop suitable electrode materials and electrolytes for accommodating the relatively large size and high activity of potassium. Herein, Bi‐based materials are reported as novel anodes for PIBs. Nanostructural design and proper selection of the electrolyte salt have been used to achieve excellent cycling performance. It is found that the potassiation of Bi undergoes a solid‐solution reaction, followed by two typical two‐phase reactions, corresponding to Bi ? Bi(K) and Bi(K) ? K5Bi4 ? K3Bi, respectively. By choosing potassium bis(fluorosulfonyl)imide (KFSI) to replace potassium hexafluorophosphate (KPF6) in carbonate electrolyte, a more stable solid electrolyte interphase layer is achieved and results in notably enhanced electrochemical performance. More importantly, the KFSI salt is very versatile and can significantly promote the electrochemical performance of other alloy‐based anode materials, such as Sn and Sb.  相似文献   

3.
Potassium ion storage technology as a promising substitute for the well‐developed lithium ion storage technology is still at the infancy stage of development, and exploring suitable electrode materials is critical for its practical application. Here, the great feasibility of disordered, large interlayer spacing, and oxygen‐rich carbon nanosheets (CNSs) prepared by chemical vapor deposition for potassium ion storage applications is demonstrated. As an anode material, the CNSs exhibit outstanding rate capability as well as excellent cyclic stability. Taking advantage of this, a potassium ion hybrid capacitor (PIHC) is constructed by employing such CNSs as the battery‐type anode and activated carbon as the capacitor‐type cathode. The resulting device displays a high energy density of 149 Wh kg?1, an ultrahigh power output of 21 kW kg?1, as well as a long cycling life (80% capacity retention after 5000 cycles), which are all close to the state‐of‐the‐art values for PIHCs. This work promotes the development of high‐performance anode material for potassium ion storage devices, and the designed PIHC pushes the energy density and power density to a higher level.  相似文献   

4.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

5.
Potassium‐ion batteries (KIBs) are important alternatives to lithium‐ and sodium‐ion batteries. Herein, microsized a Bi electrode delivers exceptional potassium storage capacity, stability, and rate capability by the formation of an elastic and adhesive oligomer‐containing solid electrolyte interface with the assistance of diglyme electrolytes. The kinetics‐controlled K–Bi phase transitions are unraveled combining electrochemical profiles, in situ X‐ray diffraction and density functional theory calculations. Reversible, stepwise Bi–KBi2–K3Bi2–K3Bi transitions govern the electrochemical processes after the initial continuous surface potassiation. The Bi electrode outperforms the other anode counterparts considering both capacity and potential. This work provides critical insights into the rational design of high‐performance anode materials for KIBs.  相似文献   

6.
Potassium‐ion batteries (KIBs) are very promising alternatives to lithium‐ion batteries (LIBs) for large‐scale energy storage. However, traditional carbon anode materials usually show poor performance in KIBs due to the large size of K ions. Herein, a carbonization‐etching strategy is reported for making a class of sulfur (S) and oxygen (O) codoped porous hard carbon microspheres (PCMs) material as a novel anode for KIBs through pyrolysis of the polymer microspheres (PMs) composed of a liquid crystal/epoxy monomer/thiol hardener system. The as‐made PCMs possess a porous architecture with a large Brunauer–Emmett–Teller surface area (983.2 m2 g?1), an enlarged interlayer distance (0.393 nm), structural defects induced by the S/O codoping and also amorphous carbon nature. These new features are important for boosting potassium ion storage, allowing the PCMs to deliver a high potassiation capacity of 226.6 mA h g?1 at 50 mA g?1 over 100 cycles and be displaying high stability by showing a potassiation capacity of 108.4 mA h g?1 over 2000 cycles at 1000 mA g?1. The density functional theory calculations demonstrate that S/O codoping not only favors the adsorption of K to the PCMs electrode but also reduces its structural deformation during the potassiation/depotassiation. The present work highlights the important role of hierarchical porosity and S/O codoping in potassium storage.  相似文献   

7.
In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1) causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.  相似文献   

8.
Novel and low‐cost rechargeable batteries are of considerable interest for application in large‐scale energy storage systems. In this context, K‐Birnessite is synthesized using a facile solid‐state reaction as a promising cathode for potassium‐ion batteries. During synthesis, an ion exchange protocol is applied to increase K content in the K‐Birnessite electrode, which results in a reversible capacity as high as 125 mAh g?1 at 0.2 C. Upon K+ exchange the reversible phase transitions are verified by in situ X‐ray diffraction (XRD) characterization. The underlying mechanism is further revealed to be the concerted K+ ion diffusion with quite low activation energies by first‐principle simulations. These new findings provide new insights into electrode process kinetics, and lay a solid foundation for material design and optimization of potassium‐ion batteries for large‐scale energy storage.  相似文献   

9.
Although metallic lithium is a promising anode material due to its high theoretical capacity, the uncontrollable growth of lithium dendrites and infinite volume change hamper its practical applications. Here, the lithiophilic property of carbonized metal–organic frameworks (cMOFs) is harnessed with zinc species to achieve a uniform lithium‐cMOFs (Li‐cMOFs) hybrid via a molten lithium infusion approach. In the resultant Li‐cMOFs, not only are abundant Zn clusters are uniformly confined and dispersed in the matrix, serving as homogeneous nucleation sites to guide Li deposition, but also the 3D conductive porous structure enables the homogenization of the distributions of electric field and Li ion flux, avoiding the formation of lithium dendrites. Hence, this hybrid exhibits superior electrochemical performance with a very low voltage hysteresis and a good cycle life. This provides a new manner to achieve a series of stable metallic lithium anodes based on the large family of metal–organic frameworks with tunable metal species.  相似文献   

10.
As an emerging electrochemical energy storage device, potassium‐ion batteries (PIBs) have drawn growing interest due to the resource‐abundance and low cost of potassium. Graphite‐based materials, as the most common anodes for commercial Li‐ion batteries, have a very low capacity when used an anode for Na‐ion batteries, but they show reasonable capacities as anodes for PIBs. The practical application of graphitic materials in PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage caused by the intercalation/deintercalation of potassium ions. Here, a highly graphitic carbon nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior depotassiation capacity of 175 mAh g?1 at 35 C. The potassium storage mechanism in CNC is revealed by cyclic voltammetry as due to redox reactions (intercalation/deintercalation) and double‐layer capacitance (surface adsorption/desorption). The present results give new insights into structural design for graphitic anode materials in PIBs and understanding the double‐layer capacitance effect in alkali metal ion batteries.  相似文献   

11.
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm?1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.  相似文献   

12.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

13.
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.  相似文献   

14.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

15.
Yao  Yasuko  Yoneyama  Tadakatsu  Hayashi  Hiroaki 《Plant and Soil》2003,249(2):279-286
Fused potassium silicate (FPS), which contains K2Ca2Si2O7, has been prepared as a slow-releasing potassium fertilizer. Moreover, it is difficult to estimate the proportion of nutrients utilized by plants that come from the soil versus the slow-releasing fertilizer applied. To trace the uptake of potassium (K) by plants from FPS supplied to the soil, the fertilizer K was partially replaced with rubidium (Rb). The growth and K+Rb uptake (moles) of Chinese cabbage (Brassica pekinensis Rupy. cv. Kekkyu) plants in sand culture experiments were not affected by the replacement of K with Rb. In pot experiments using a volcanic ash Ando soil, Chinese cabbage was grown with no application of K, with K and Rb salts, or with Rb-containing FPS for three cycles of 40 days each. The amounts of fertilizer-derived K in the shoots estimated by the Rb-tracer method were smaller than those estimated by the difference of K accumulation between K fertilized and unfertilized plants. Such result suggests the involvement of `K priming', a process by which the addition of K fertilizers enhances plant K uptake from the soil. The amount of K absorbed from FPS, calculated by the Rb-tracer method, indicated that the sparingly soluble K, that is soluble in 0.2 g L–1 citric acid solution but not in water, was absorbed at least partly through direct contact with the roots without prior exchange with soil K. Moreover, the plant absorption of sparingly soluble K from FPS was also confirmed by the difference method in K uptake.  相似文献   

16.
Potassium and phosphorus transport and signaling in plants   总被引:2,自引:0,他引:2  
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.  相似文献   

17.
以烟草和AM真菌菌株摩西球囊霉(Glomous mosseae,G.m)为材料,研究了不同外界K+浓度条件下AM真菌对烟草生长、K+含量以及根中K+-通道基因NtKT1、NtKT2和转运体基因NtHAK1、NtHA1相对表达量的影响。结果表明,在低钾和常钾条件下,接种G.m均可提高烟草的株高,增加根系长度,提高烟草根部和叶片中的K+含量,在低钾条件下接种G.m使烟草根部和叶片的K+含量分别提高了50.5%和24.5%。在常钾条件下,接种G.m 50 d后烟草根系中NtKT1和NtKT2的相对表达量显著提高;而低钾条件下,钾转运体基因NtHAK和NtHA1的相对表达量显著升高。由此推测,AM真菌能够调控烟草根中K+-通道基因和钾转运体基因的表达进而促进其对K+的吸收。  相似文献   

18.
Metallic sodium is receiving renewed interest as a battery anode material because the metal is earth‐abundant, inexpensive, and offers a high specific storage capacity (1166 mAh g?1 at ?2.71 V vs the standard hydrogen potential). Unlike metallic lithium, the case for Na as the anode in rechargeable batteries has already been demonstrated on a commercial scale in high‐temperature Na||S and Na||NiCl2 secondary batteries, which increases interest. The reversibility of room temperature sodium anodes is investigated in galvanostatic plating/stripping reactions using in situ optical visualization and galvanostatic polarization measurements. It is discovered that electronic disconnection of mossy metallic Na deposits (“orphaning”) is a dominant source of anode irreversibility in liquid electrolytes. The disconnection is shown by means of direct visualization studies to be triggered by a root‐breakage process during the stripping cycle. As a further step toward electrode designs that are able to accommodate the fragile Na deposits, electrodeposition of Na is demonstrated in nonplanar electrode architectures, which provide continuous and morphology agnostic access to the metal at all stages of electrochemical cycling. On this basis, nonplanar Na electrodes are reported, which exhibit exceptionally high levels of reversibility (Coulombic efficiency >99.6% for 1 mAh cm?2 Na throughput) in room‐temperature, liquid electrolytes.  相似文献   

19.
The objective of this investigation was to determine whether urinary and plasma potassium changes developed during prolonged hypokinesia (HK) (decreased number of km/d) in endurance-trained subjects could be minimized or reversed with a daily intake of fluid and salt supplementation (FSS). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr with an average peak oxygen uptake of 65 mL/kg min during 364 d of HK. All volunteers were on an average of 13.8 km/d prior to their exposure to HK. All volunteers were randomly divided into three groups: 10 volunteers were placed continuously under an average of 14.0 km/d (control subjects), 10 volunteers were subjected continuously to an average of 2.7 km/d (unsupplemented hypokinetic subjects), and 10 volunteers were submitted continuously to an average of 2.7 km/d, and consumed daily an additional amount of 0.1 g sodium chloride (NaCl)/kg body wt and 30 mL water/kg body wt (supplemented hypokinetic subjects). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d, potassium loading tests were performed with 1.5–1.7 mEq potassium chloride/kg body wt, and potassium, sodium, and chloride excretion in urine and potassium, sodium, and chloride in plasma were determined. In the unsupplemented hypokinetic volunteers, urinary excretion of electrolytes and concentrations of electrolytes in plasma increased significantly as compared to the control and supplemented hypokinetic groups of volunteers. It was concluded that daily intake of fluid and salt supplementation had a favorable effect on regulation of urinary and plasma potassium changes in trained subjects during prolonged HK.  相似文献   

20.
Net taurine transport across the frog retinal pigment epithelium-choroid was measured as a function of extracellular potassium concentration, [K+]o. The net rate of retina-to-choroid transport increased monotonically as [K+]o increased from 0.2 mM to 2 mM on the apical (neural retinal) side of the tissue. No further increase was observed when [k+]o was elevated to 5 mM. The [K+]o changes that modulate taurine transport approximate the light-induced [K+]o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium. The taurine-potassium interaction was studied by using rubidium as a substitute for potassium and measuring active rubidium transport as a function of extracellular taurine concentration. An increase in apical taurine concentration, from 0.2 mM to 2 mM, produced a threefold increase in active rubidium transport, retina to choroid. Net taurine transport can also be altered by relatively large, 55 mM, changes in [Na+]o. Apical ouabain, 10(-4) M, inhibited active taurine, rubidium, and potassium transport; in the case of taurine, this inhibition is most likely due to a decrease in the sodium electrochemical gradient. In sum, these results suggest that the apical membrane contains a taurine, sodium co-transport mechanism whose rate is modulated, indirectly, through the sodium pump. This pump has previously been shown to be electrogenic and located on the apical membrane, and its rate is modulated, indirectly, by the taurine co-transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号