首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present data on the morphological features and linear measurements for the Hexian Homo erectus and other comparative endocasts, in order to highlight variation during human brain evolution. The endocast of Hexian was reconstructed in 1982, and an endocranial volume of 1,025 ml was estimated. The geological age is about 412 ka, or roughly contemporaneous with the Zhoukoudian (ZKD) specimens. There are some differences between Hexian and the modern Chinese male endocasts in our sample, including low position of the greatest breadth, low maximum height, a well-marked and prominent frontal keel, the flat surface of the frontal lobes, prominent sagittal keel along the center frontal and parietal lobes, depressed Sylvian areas and parietal lobes superiorly, strong posterior projection of the occipital lobes, anterior position of the cerebellar lobes relative to the occipital lobes, and the relative simplicity of the meningeal vessels. Compared with the ZKD, Indonesian, and African Homo erectus specimens, Hexian has more morphological features in common with ZKD. Principal component analyses indicate that Hexian is closest to the ZKD Homo erectus compared with the modern Chinese and other Homo erectus, but its great breadth distinguishes it. Metric analyses show that the brain height, frontal breadth, cerebral height, frontal height, and parietal chord from Homo erectus to modern humans increased, while the length, breadth, frontal chord, and occipital breadth did not change substantially.  相似文献   

2.
A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.  相似文献   

3.
Glycolipid (ganglioside, cerebroside and cerebroside sulphate) and cholesterol concentrations for cerebral grey matter from frontal, occipital, temporal and hippocampal lobes of patients with neurological diseases (Alzheimer's disease, senile dementia, cerebrocortical atrophy, schizophrenia and chronic alcoholism) and controls are reported. The results indicate that the concentrations of these lipids are not uniform in the different lobes of both diseased and control brains. The concentrations of the cerebrosides and cerebroside sulphates were generally highest in the occipital lobe and lowest in the frontal lobe; ganglioside N-acetymeuraminic acid (NANA) concentrations on the other hand were lowest in the occipital lobe and highest in the frontal lobe. About one-half of the total NANA was found in the lipid-free residues. There was a general decrease in the concentrations of the glycolipids in the grey matter from the frontal, temporal and hippocampal lobes of brain obtained from patients with neurological diseases (the chronic alcoholic being excluded) below the control values from patients with no known neurological diseases. The cholesterol concentrations in the schizophrenic and alcoholic brains were reduced slightly in all the lobes studied. The general decrease in the glycolipid concentration in the diseased brain may indicate the extent of cortical degeneration.  相似文献   

4.
DNA sequence data of the nuclear-encoded gamma1-gamma2-globin duplication region were used to examine the phylogenetic relationships of 16 cercopithecid (Old World monkey) species representing 12 extant genera. Morphology- and molecular-based hypotheses of Old World monkey branching patterns are generally congruent, except for generic relationships within the subtribe Papionina. The cercopithecids divide into colobines (leaf-eating monkeys) and cercopithecines (cheek-pouched monkeys). The colobines examined by the DNA data divide into an Asian clade (Nasalis, proboscis monkeys; Trachypithecus, langurs) and an African clade (Colobus, colobus monkeys). The cercopithecines divide into tribes Cercopithecini (Erythrocebus, patas monkey; Chlorocebus, green monkeys; Cercopithecus, guenons) and Papionini. Papionins divide into subtribes Macacina (Macaca, macaques) and Papionina (Papio, hamadryas baboons; Mandrillus, drills and mandrills; Theropithecus, gelada baboons; Lophocebus, arboreal mangabeys; Cercocebus, terrestrial mangabeys). In a morphologically based classification, Mandrillus is a subgenus of Papio, whereas Lophocebus is a subgenus of Cercocebus. In contrast, the molecular evidence treats Mandrillus as a subgenus of Cercocebus, and treats both Theropithecus and Lophocebus as subgenera of Papio. Local molecular clock divergence time estimates were used as a yardstick in a "rank equals age" system to propose a reduction in taxonomic rank for most clades within Cercopithecidae.  相似文献   

5.
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens.This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens.  相似文献   

6.
Normative data on the in vivo size of the human brain and its major anatomically defined subdivisions are not readily available. In this study, high-resolution magnetic resonance imaging was used to measure regional brain volumes in 46 normal, right-handed adults (23 men, 23 women) between the ages of 22-49 years. Parcellation of the brain was based on neuroanatomical landmarks. The following brain regions were measured: the cerebral hemispheres, frontal lobe, temporal lobe, parietal lobe, occipital lobe, cingulate gyrus, insula, cerebellum, corpus callosum, and lateral ventricles. Males tend to be significantly larger than females, for the whole brain and for nearly all of its major subdivisions, including the corpus callosum. However, the proportional sizes of regions relative to total volume of the hemisphere are remarkably similar in males and females. Variation in size of region is always greater than variation in proportional representation. Asymmetries in brain regions are not profound, with the exception of the cingulate gyrus, which is larger in the left hemisphere. Brain regions are highly correlated in size, with the exception of the lateral ventricles. After controlling for hemisphere size, the volumes of the frontal and parietal lobes are significantly negatively correlated. The occipital lobe tends to be less sexually dimorphic than other major lobes, and less correlated with other brain regions for volume. These results have implications for understanding whether or not certain sectors of the brain have shown relative expansion over the course of hominid and hominoid evolution.  相似文献   

7.
Objective: To investigate any correlation between BMI and brain gray matter volume, we analyzed 1,428 healthy Japanese subjects by applying volumetric analysis and voxel‐based morphometry (VBM) using brain magnetic resonance (MR) imaging, which enables a global analysis of brain structure without a priori identification of a region of interest. Methods and Procedures: We collected brain MR images from 690 men and 738 women, and their height, weight, and other clinical information. The collected images were automatically normalized into a common standard space for an objective assessment of neuroanatomical correlations in volumetric analysis and VBM with BMI. Results: Volumetric analysis revealed a significant negative correlation in men (P < 0.001, adjusting for age, lifetime alcohol intake, history of hypertension, and diabetes mellitus), although not in women, between BMI and the gray matter ratio, which represents the percentage of gray matter volume in the intracranial volume. VBM revealed that, in men, the regional gray matter volume of the bilateral medial temporal lobes, anterior lobe of the cerebellum, occipital lobe, frontal lobe, precuneus, and midbrain showed significant negative correlations with BMI, while those of the bilateral inferior frontal gyri, posterior lobe of the cerebellum, frontal lobes, temporal lobes, thalami, and caudate heads showed significant positive correlations with BMI. Discussion: Global loss and regional alterations in gray matter volume occur in obese male subjects, suggesting that male subjects with a high BMI are at greater risk for future declines in cognition or other brain functions.  相似文献   

8.
Regional distribution of adenosine deaminase in the human neuraxis   总被引:2,自引:0,他引:2  
Adenosine deaminase was determined in 28 different areas of the human neuraxis in 5 adult male cadavers, with no known disease of the nervous system, using a very sensitive colorimetric method. The enzyme was highest in the frontal lobe white matter, and lowest in the medulla and all levels of the spinal cord. Enzyme content was about twice as great in the white matter of the frontal and temporal lobes and cerebellum as it was in the cortical gray matter of these areas, but only slightly higher in the white matter of the parietal and occipital lobes as compared to gray. Average values of the enzyme were found in the remaining areas of the brain, with the exception of the pons and cerebellar white matter, where a higher than average value was noted.  相似文献   

9.
A new brain endocast of Homo erectus from Hulu Cave, Tangshan, Nanjing is described and compared with a broad sample of endocasts of H. erectus, Neanderthals, and recent modern humans. The Nanjing 1 endocast is reconstructed based on two portions of endocranial casts taken from the original fossil fragments. The fossil was discovered in 1993, near Nanjing, South China and is dated to ~ 0.58-0.62 Ma. The cranial capacity is ~ 876 cc, as determined by endocast water displacement. There are some common features of Nanjing 1 and other H. erectus endocasts that differentiate them from the Neanderthals and modern humans in our sample. These include small cranial capacity, low height dimensions, simple middle meningeal vessel patterns, a high degree of cerebral-over-cerebellar lobe overhang, elongated and quite separated cerebellar lobes, and a narrow, low, short and flat frontal region. Some features are found to vary among H. erectus, Neanderthals and modern humans, such as the lateral Sylvian fissure position and the venous sinus and petalial patterns. The Nanjing 1 endocast has unique, large, superior frontal convolutions, and strongly protruding Broca's caps. In contrast to other Chinese H. erectus from Hexian and Zhoukoudian, Nanjing 1 lacks strong posterior projection of the occipital lobes. Bivariate and principal component analyses indicate that the small volume and shape of Nanjing 1 is most similar to KNM-WT 15000, KNM-ER 3883, Sangiran 2 and Hexian, illustrating the combination of narrow, low, and short frontal lobes with wide posterior lobes.  相似文献   

10.
Although several evolutionary forces have been proposed to contribute to genital morphological diversification, it is unclear which might act early during the evolution of novel structural traits. We test the hypothesis that mismatch between interacting male and female secondary sexual structures gives rise to increased harm to females, consistent with the outcome predicted from a history of sexual conflict. We mate Drosophila sechellia females to males from a collection of D. mauritiana–D. sechellia interspecific genetic introgression lines that possess quantitative morphological variation in the posterior lobe of the genital arch, an external genital structure that can cause wounds to the female abdomen during mating. We find that males with smaller posterior lobes, and those that possess lobes with similarities in shape to D. mauritiana, cause more severe wounding compared to either D. sechellia males with strain‐specific morphologies or introgression males that possess larger lobes or lobes with more pronounced D. sechellia features. These results suggest a possible history of sexual conflict during the evolution of the posterior lobe in D. sechellia, but also suggest a potential contribution of divergence in sensory recognition mechanisms to posterior lobe evolution.  相似文献   

11.
Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. Am J Phys Anthropol 156:252–262, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
A newly discovered right parietal/temporal/frontal fragment from an australopithecine natural endocast is described and compared to other australopithecine endocasts. This specimen shows that the central sulcus was arched, rather than straight as previously believed, and reveals frontal lobe convolutions not preserved in other australopithecine endocasts.  相似文献   

13.
The distribution of the evoked cortical potentials recorded during stereotactic pulvinectomy is analyzed. The evoked cortical potential shows maximal amplitude in the precentral area, with decreasing amplitude in the parietal and anterior temporal area, and minimal amplitude in the occipital area. The pulvinar has been histologically considered to have dense connections with the parietal lobe and no connection with the frontal lobe. However, our results suggest that the pulvinar has a dense functional connection with the frontal cortex, through which the pulvinar plays a role in motor function.  相似文献   

14.
Extinct populations of Terricola savii have been investigated in order to analyse evolutionary stasis and correlation of first lower molar shape with climatic proxies by means of geometric morphometrics. Evolutionary stasis, its recognition and explanation are central topics in evolutionary paleobiology. In this study, tooth shape variation of the arvicolid T. savii has been analysed through time. In addition to explicit multivariate tests of stasis based on landmark and semi‐landmark geometric morphometrics, first lower molar M1 shape has been decomposed in orthogonal axes of variation and tested for correlation with climate changes. Multivariate tests were consistent with evolutionary stasis. Yet, according to univariate tests, the dominant dimension of shape variation shows a temporal trend well correlated with a climatic proxy, i.e. δ18O. The remaining variation does not show any trend. Adaptation to current climatic condition might occur even without affecting shape as a whole. Phenotypic plasticity of this species could be invoked to explain evolutionary stasis, as a long time pattern.  相似文献   

15.
Glutathione peroxidase (GSHPx) activity was assayed in normal cerebral gray and white matter samples obtained from frontal, temporal, occipital and parietal lobes during surgical approach to an underlying lesion, and also in normal autopsied human frontal gray and white matter. GSHPx was assayed by a 2 step enzyme reaction which was monitored by following the oxidation of NADPH at 340 nm. It was found that all the brain samples studied contained GSHPx activity. Parietal lobe appeared to have the lowest GSHPx activity compared to temporal, occipital or frontal lobes. Mean enzyme activity in autopsied samples was comparable to that in surgical material. However, considerable loss of activity was observed after 10 years of tissue storage at –80°C.This investigation was supported by the Verterans Administration.  相似文献   

16.
Family Poverty Affects the Rate of Human Infant Brain Growth   总被引:1,自引:0,他引:1  
Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.  相似文献   

17.
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.  相似文献   

18.
Digital subtraction angiography (DSA) is often used to evaluate the morphological and pathological changes of cerebral arteries in clinical practice. This study aims to explore the possibility of assessing cerebral hypoperfusion with DSA in patients with carotid stenosis. Thirty patients with a mild to severe stenosis on one side, and a mild stenosis on the other side of the carotid artery were recruited. Frontal, parietal, temporal and occipital lobes were chosen as regions of interest for measuring the quantitative perfusion parameters from their time-density curves (TDCs) of DSA images. The perfusion parameters were compared between the two hemispheres by using paired t-test. In addition, the bilateral asymmetry of these parameters was calculated and its correlation with the bilateral asymmetry in stenosis was analyzed. The parameters included mean transit time (MTT), time of contrast uptake (TU), time taken to the half peak value (1/2TMAX), area under the curve (AUC) were significantly prolonged at the severe stenosis side than those at the mild stenosis side in frontal lobe (P=0.013; P=0.041; P=0.009; P=0.027) and parietal lobe (P=0.008; P=0.041; P=0.002; P=0.012). The asymmetric ratios of MTT and AUC showed statistically significant correlations with stenosis asymmetry in all four lobes. MTT, TU, 1/2TMAX and AUC could reflect the bilateral asymmetry of the cerebral perfusion. These DSA parameters, therefore, may be used for the evaluation of cerebral hypoperfusion caused by carotid stenosis.  相似文献   

19.
The optic lobe is the largest brain area within the central nervous system of cephalopods and it plays important roles in the processing of visual information, the regulation of body patterning, and locomotive behavior. The oval squid Sepioteuthis lessoniana has relatively large optic lobes that are responsible for visual communication via dynamic body patterning. It has been observed that the visual behaviors of oval squids change as the animals mature, yet little is known about how the structure of the optic lobes changes during development. The aim of the present study was to characterize the ontogenetic changes in neural organization of the optic lobes of S. lessoniana from late embryonic stage to adulthood. Magnetic resonance imaging and micro‐CT scans were acquired to reconstruct the 3D‐structure of the optic lobes and examine the external morphology at different developmental stages. In addition, optic lobe slices with nuclear staining were used to reveal changes in the internal morphology throughout development. As oval squids mature, the proportion of the brain making up the optic lobes increases continuously, and the optic lobes appear to have a prominent dent on the ventrolateral side. Inside the optic lobe, the cortex and the medulla expand steadily from the late embryonic stage to adulthood, but the cell islands in the tangential zone of the optic lobe decrease continuously in parallel. Interestingly, the size of the nuclei of cells within the medulla of the optic lobe increases throughout development. These findings suggest that the optic lobe undergoes continuous external morphological change and internal neural reorganization throughout the oval squid's development. These morphological changes in the optic lobe are likely to be responsible for changes in the visuomotor behavior of oval squids from hatching to adulthood.  相似文献   

20.

Background

Posterior Cortical Atrophy (PCA) is a neurodegenerative disease characterized by a progressive decline in selective cognitive functions anatomically referred to occipital, parietal and temporal brain regions, whose diagnosis is rather challenging for clinicians. The aim of this study was to assess, using quantitative Magnetic Resonance Imaging techniques, the pattern of regional grey matter loss and metabolism in individuals with PCA to improve pathophysiological comprehension and diagnostic confidence.

Methods

We enrolled 5 patients with PCA and 5 matched controls who all underwent magnetic resonance imaging (MRI) and spectroscopy (MRS). Patients also underwent neuropsychological and cerebrospinal fluid (CSF) assessments. MRI data were used for unbiased assessment of regional grey matter loss in PCA patients compared to controls. MRS data were obtained from a set of brain regions, including the occipital lobe and the centrum semiovale bilaterally, and the posterior and anterior cingulate.

Results

VBM analysis documented the presence of focal brain atrophy in the occipital lobes and in the posterior parietal and temporal lobes bilaterally but more pronounced on the right hemisphere. MRS revealed, in the occipital lobes and in the posterior cingulate cortex of PCA patients, reduced levels of N-Acetyl Aspartate (NAA, a marker of neurodegeneration) and increased levels of Myo-Inositol (Ins, a glial marker), with no hemispheric lateralization.

Conclusion

The bilateral but asymmetric pattern of regional grey matter loss is consistent with patients’ clinical and neuropsychological features and with previous literature. The MRS findings reveal different stages of neurodegeneration (neuronal loss; gliosis), which coexist and likely precede the occurrence of brain tissue loss, and might represent early biomarkers. In conclusion, this study indicates the potential usefulness of a multi-parametric MRI approach for an early diagnosis and staging of patients with PCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号