首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
In this research, the effect of light intensity on biomass accumulation, wastewater nutrient removal through algae cultivation, and biodiesel productivity was investigated with algae species Chlorella kessleri and Chlorella protothecoide. The light intensities studied were 0, 15, 30, 60, 120, and 200 μmol m(-2) s(-1). The results showed that light intensity had profound impact on tested responses for both strains, and the dependence of these responses on light intensity varied with different algae strains. For C. kessleri, the optimum light intensity was 120 μmol m(-2) S(-1) for all responses except for COD removal. For C. protothecoide, the optimum light intensity was 30 μmol m(-2) S(-1). The major components of the biodiesel produced from algae biomass were 16-C and 18-C FAME, and the highest biodiesel contents were 24.19% and 19.48% of dried biomass for C. kessleri and C. protothecoide, respectively. Both species were capable of wastewater nutrients removal under all lighting conditions with high removal efficiencies.  相似文献   

2.
温、光、盐对硅藻STR01生长、总脂、脂肪酸的影响   总被引:1,自引:0,他引:1  
为了优化新分离STR01的生态培养条件, 采用单因子试验和正交试验研究了不同温度、光照强度、盐度和温、光、盐三因素三水平对该藻的生长、总脂和脂肪酸组成影响。结果表明: 温、光、盐对STR01的生长、总脂和脂肪酸组成影响显著(P<0.05)。生长的适宜温度为15—35℃, 最适25—30℃(K值达0.679—0.682), 总脂含量积累的最适温度是25℃(总脂可达17.23%), 温度20℃时有利于该藻PUFA的积累, 可达34.23%。STR01生长的适宜光照强度为40—120 μmol/(m2·s), 最适光强为60 μmol/(m2·s), 光照强度40 μmol/(m2·s)有利于该藻的PUFA积累, 可达34.29%。STR01生长的适宜盐度为10—35, 最适盐度25, 盐度25时PUFA含量较高(43.42%)。正交试验结果表明温度对STR01的平均相对生长速率和总脂含量影响显著, 生长的最优组合: 温度30℃、光照强度60 μmol/(m2·s)、盐度25, 该组合下的生长速率达0.756; 总脂含量积累的最优组合: 温度30℃、光照强度60 μmol/(m2·s)、盐度20, 该组合下的总脂含量为20.00%。PUFA的最优组合: 温度25℃、光照强度60 μmol/(m2·s)、盐度20, 该组合下PUFA的含量为35.37%。综上所述: 该藻生长迅速, 总脂含量较高, PUFA丰富, 是一种可开发利用的耐高温浮游硅藻。  相似文献   

3.
[背景]环境因子和营养因子对微藻的生长和生化组成都有显著的影响,其中光强和氮浓度是最重要的两个条件。[目的]研究不同光强和初始氮浓度对丝状绿藻-双星藻(Zygnema sp.)生长及生化组成的影响。[方法]采用改良的BBM培养基,设置了两组光强[100μmol/(m^2·s)和300μmol/(m^2·s)]和6种初始氮浓度(3、6、9、12、15和18 mmol/L)在柱状光生物反应器中对双星藻进行培养。[结果]在高光强条件下[300μmol/(m^2·s)],12 mmol/L初始氮浓度最有利于双星藻生物质的积累,其最高生物量可以达到6.60 g/L,而初始低氮浓度(3 mmol/L)则促进了油脂和脂肪酸的积累,油脂最高含量占干重的32.13%,且脂肪酸组成主要包括棕榈酸(C16:0)、油酸(C18:1)、亚油酸(C18:2)和亚麻酸(C18:3),其中油酸含量最高达到总脂肪酸含量的55.01%;在低光强条件下[100μmol/(m^2·s)],初始氮浓度为18 mmol/L时,总蛋白质和总碳水化合物的含量达到最高,分别占干重的16.35%和37.70%,而总脂含量仅占干重10.16%。[结论]光强和初始氮浓度对双星藻生长具有较大影响,通过调节光强和初始氮浓度可有效提高双星藻目标代谢产物的积累。  相似文献   

4.
为探究水飞蓟素(Silymarin)对草鱼肝细胞脂质蓄积的作用及其机理, 体外培养草鱼肝细胞, 在用400 μmol/L油酸对其进行蓄脂诱导的同时, 采用不同质量浓度的水飞蓟素处理24h, 检测了肝细胞活力、脂质蓄积状况、抗氧化指标和脂质代谢相关基因表达状况。结果显示, 水飞蓟素质量浓度在75—125 μg/mL对草鱼肝细胞活力无影响(P>0.05); 与单独采用油酸进行蓄脂诱导的油酸组比较, 水飞蓟素和油酸共同处理的水飞蓟素组中, 随着水飞蓟素质量浓度的增加, 肝细胞内的脂质含量逐渐降低, 且水飞蓟素质量浓度在100—150 μg/mL时的肝细胞脂质蓄积水平显著降低(P<0.05); 与油酸组相比, 100 μg/mL水飞蓟素处理组的脂质含量以时间依赖性的模式显著降低(P<0.05), 还原型谷胱甘肽含量显著升高(P<0.05), 脂肪酸合成酶和硬脂酰辅酶A去饱和酶1的mRNA表达量显著下调(P<0.05)。研究表明, 水飞蓟素能够抑制草鱼肝细胞脂质蓄积, 其作用可能与其抑制脂质合成基因的表达有关; 同时, 水飞蓟素可能通过提高肝细胞的抗氧化能力发挥保护肝细胞的作用。  相似文献   

5.
Chlorophyll containing callus cells of Marchantia polymorpha are able to grow under dim illumination in the presence of an organic carbon source and retain the ability to produce polyunsaturated fatty acids (PUFA), including C(20) fatty acids. Highest PUFA production was achieved using 2,4-dichlorophenoxyacetic acid as growth regulator. Inoculum size, illumination intensity, organic carbon source, and ferrous ion are the major factors affecting PUFA productivity. Maximum PUFA productivity is attained under low light intensity, with a photon flux density ca. 20 micromol m(-2) s(-1). Optimal inoculum size and glucose concentration for PUFA production are 8-12% and 20-30 g l(-1), respectively. Ferrous ion can promote PUFA productivity by increasing the intracellular lipid content. Highest productivities for PUFA, arachidonic acid (ARA), and eicosapentaenoic acid (EPA) were 35.0+/-2.1, 6.7+/-0.4 and 6.6+/-0.4 mg l(-1) day(-1), respectively. PUFA production in the M. polymorpha culture is shown to be strongly growth-associated. Environmental stress (osmotic pressure) is ineffective in promoting PUFA productivity. Chitosan, an elicitor, also has no effect on intracellular PUFA content in cultured M. polymorpha cells.  相似文献   

6.
Das P  Lei W  Aziz SS  Obbard JP 《Bioresource technology》2011,102(4):3883-3887
Biomass productivity and fatty acid methyl esters (FAME) derived from intracellular lipid of a Nannochloropsis sp. isolated from Singapore’s coastal waters were studied under different light wavelengths and intensities. Nannochloropsis sp., was grown in both phototrophic and mixotrophic (glycerol as the carbon source) culture conditions in three primary monochromatic light wavelengths, i.e., red, green and blue LEDs, and also in white LED. The maximum specific growth rate (μ) for LEDs was blue > white > green > red. Nannochloropsis sp. achieved a μ of 0.64 and 0.66 d−1 in phototrophic and mixotrophic cultures under blue lighting, respectively. The intracellular fatty acid composition of Nannochloropsis sp. varied between cultures exposed to different wavelengths, although the absolute fatty acid content did differ significantly. Maximum FAME yield from Nannochloropsis sp. was 20.45% and 15.11% of dry biomass weight equivalent under photo- and mixotrophic culture conditions respectively for cultures exposed to green LED (550 nm). However, maximum volumetric FAME yield was achieved for phototrophic and mixotrophic cultures (i.e., 55.13 and 111.96 mg/l, respectively) upon cell exposure to blue LED (470 nm) due to highest biomass productivity. It was calculated that incremental exposure of light intensity over the cell growth cycle saves almost 20% of the energy input relative to continuous illumination for a given light intensity.  相似文献   

7.
The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l?1 day?1. The highest lipid yields were observed for Chlorella (204.91 mg l?1 day1) and Botryococcus strains (112.43 and 98.00 mg l?1 day?1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.  相似文献   

8.
High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro‐environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ‐on‐line 2‐D nano‐LC/MS) in a non‐model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high‐quality proteomic dataset consisted of 695 proteins. Using a cutoff of P < 0.05, 241 unique proteins with differential expression levels were identified between control and different inoculum sizes. Functional analysis showed that proteins participating in photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 106 cells mL?1, and lowest levels under 1 × 107 cells mL?1. Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up‐regulation under the illumination of 70–110 µmol m?2 s?1, compared to those of 40 µmol m?2 s?1. This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved. Biotechnol. Bioeng. 2013; 110: 773–784. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A model of heterotrophy and nutrition-limitation transition cultivation for efficient algal biomass and lipid production was proposed in this study, wherein sufficient robust heterotrophic-seed cells submitted into nitrogen-starvation induction for boosted lipid accumulation. The results demonstrated that heterotrophic-seed (HS) achieved specific growth rate of 1.35 day?1 and biomass productivity of 1.93 mg/L/d, representing 6.42- and 32.16-fold, 2.01- and 2.75-fold more than that of photoautotrophic-seed (PS) and mixtrophic-seed (MS). Even though subsequent nutrition-limitation cultivation repressed the growth of HS, the overall lipid productivity caused by nitrogen-starvation was not offset by biomass loss. The most favorable lipid productivity (465.61 mg/L/d) of HS was 3.25 and 52.31 times higher than that of MS and PS. The high content of monounsaturated fatty acids (50.13%) over saturated and polyunsaturated fatty acids (totally 47.39%) in HS cells could provide superior oxidation stability and lower viscosity for biofuels generated from algal biomass feedstock. These findings suggested the feasibility of using heterotrophy and nutrition-limitation transition cultivation for enhancing the overall lipid productivity. Further, several critical enzymes (i.e. G3PDH, ME, and ACAD) were highly related to lipid accumulation and showed especially pronounced up-regulation or down-regulation expression in HS, which provide indications for shedding light on the molecular mechanisms of lipid accumulation and a prospective metabolic engineering for lipid production.  相似文献   

10.
Controlled nitrate feeding strategies for fed-batch cultures of microalgae were applied for the enhancement of lipid production and microalgal growth rates. In particular, in this study, the effect of nitrate feeding rates on lipid and biomass productivities in fed-batch cultures of Nannochloropsis gaditana were investigated using three feeding modes (i.e., pulse, continuous, and staged) and under two light variations on both lipid productivity and fatty acid compositions. Higher nitrate levels negatively affected lipid production in the study. Increasing the light intensity increased the lipid contents of the microalgae in all three fed-batch feeding modes. A maximum of 58.3% lipid- to dry weight ratio was achieved when using pulse-fed cultures at an illumination of 200 μmol photons m−2 s−1 and 10 mg/day of nitrate feeding. This condition also resulted in the maximum lipid productivity of 44.6 mg L−1 day−1. The fatty acid compositions of the lipids consisted predominantly of long-chain fatty acids (C:16 and C:18) and accounted for 70% of the overall fatty acid methyl esters. Pulse feeding mode was found to significantly enhance the biomass and lipid production. The other two feeding modes (continuous and staged) were not ideal for lipid and biomass production. This study demonstrates the applicability of pulse feeding strategies in fed-batch cultures as an appropriate cultivation strategy that can increase both lipid accumulation and biomass production.  相似文献   

11.
Microalgae are among the most promising of non‐food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light‐emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two‐phase strategy with an initial nutrient‐sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production. Biotechnol. Bioeng. 2011;108: 2280–2287. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

13.
The aim of this study was to investigate the potential of the green microalga Chlorella saccharophila as a source of oil for biodiesel production. We evaluated for the first time, the effect of salinity and/or nitrogen depletion (ND) on cell growth, lipid accumulation and lipid profile in this microalga. The fatty acid methyl esters (FAME) identified for C. saccharophila in this study consisted of C-16:0, C-18:0, C-18:1 cis, and C-18:1 trans. Among these, C-18:1 (indicator of biodiesel quality) was the main FAME found, representing approximately 76 and 80% of total FAME under normal and ND growing conditions, respectively. Under a normal growing condition this microalga showed 154.63 mg l−1 d−1, 63.33 mg l−1 d−1, and 103.73 mg l−1 of biomass productivity, lipid productivity, and FAME yield, respectively. The higher biomass productivity (159.58 mg l−1 d−1), lipid productivity (99.33 mg l−1 d−1), and FAME yield (315.53 mg l−1) were obtained under the ND treatment. In comparison to other related studies, our results suggest that C. saccharophila can be considered as a suitable source of oil for biodiesel production.  相似文献   

14.
Algae have been explored for renewable energy, nutraceuticals, and value-added products. However, low lipid yield is a significant impediment to its commercial viability. Genetic engineering can improve the fatty acid profile of algae without compromising its growth. This study introduced the diacylglycerol acyltransferase (BnDGAT) gene from Brassica napus into Chlorella sorokiniana-I, a fast-growing and thermotolerant natural strain isolated from wastewater, which increased its intracellular lipid accumulation. Hygromycin-resistant cells were selected, and enhanced green florescence protein fluorescence was used to distinguish pure transgenic cell lines from mixed cultures. Compared to the wild type, BnDGAT expression in transgenic C. sorokiniana-I caused a threefold increase in non-polar lipid and a twofold increase in polyunsaturated fatty acids. Nile red staining reaffirmed the presence of higher intracellular lipid bodies in transgenic cells. There was a substantial alteration in the fatty acid profile of transgenic alga expressing BnDGAT. The non-essential omega 9 (C18: 1) fatty acid decreased (5%–7% from 18%), while alpha-linolenic acid, an essential omega 3 fatty acid (C18: 3), was increased (23%–24% from 11%). This study substantiates a valuable strategy for enhancing essential omega-3 fatty acids and neutral lipids to improve its nutritional value for animal feed. The increased lipid productivity should reduce the cost of producing fatty acid methyl esters (FAME). Improved FAME quality should address the clouding issues in cold regions.  相似文献   

15.
The impact of the vegetative inoculum parameters on specificity of the secondary synthesis in the cultures producing novobiocin and mycoheptin was studied. During the study the fermentation conditions were varied by using the vegetative inoculum differing in the respiration rate after its transfer to the fermentation medium. To show the decisive role of the inoculum parameters in regulation of the specificity of the secondary synthesis, the dynamics of accumulation of certain metabolites forming from glucose along with the main antibiotic and the activity of the key enzymes of the carbohydrate metabolism during the culture growth in the fermentation media were studied. It was found that the specificity of the secondary synthesis with respect to certain metabolites was defined by the intensity of carbohydrate metabolism, i. e. the ratio of the activity of enzymes of glycolysis and the pentosephosphate pathway. In this regard, the inoculum with the maximum respiration rate in an amount of 10 to 20 per cent promoted the highest productivity of the mycelium by the synthesis of novobiocin and mycoheptin while the rate of accumulation of fatty acids, carbohydrates and phenol compounds (for Streptomyces spheroides) and mycopentene (for Streptoverticillium mycoheptinicum) decreased.  相似文献   

16.
The effect of cell density (1–4.5 g L-1) and light intensity (44 and 82 mol m-2 s-1) on fatty acid composition andeicosapentaenoic acid (EPA, 20:5 3) production was studied ina semi-continuous culture of Monodus subterraneus grown in a helicaltubular photobioreactor (`Biocoil') under laboratory conditions. Under lowlight, the highest proportion of EPA (31.5% of total fatty acids) and EPAcontent (3.5% of dry weight), biomass productivity (1.3 g L-124 h-1) and EPA productivity (44 mg L-1 24 h-1)occurred at optimal cell density of about 1.7 g L-1. Cell densityhad no effect on the total fatty acid (TFA) content and was maintained atca. 11% of dry weight. Under high light, the highest proportion ofEPA to fatty acids (31.8%), the total fatty acids content (13.4%) andEPA content (4.3% of dry weight) occurred at cell density of about 3.4gL-1. But the highest biomass productivity (1.7 g L-124 h-1) and EPA productivity (56 mg L-1 24 h-1) wereobtained at a cell density of 1.6 and 2.6g L-1, respectively. Ourresults suggest that manipulating the cell density and light intensity canmodify the composition of fatty acid and production of eicosapentaenoicacid (EPA) in M. subterraneus.  相似文献   

17.
Sesamol (3,4-methylenedioxyphenol) at 2.5 mM inhibited growth of Fusarium moniliforme by about 40% and lipid accumulation by 35%. Gibberellin (GA3) accumulation was increased by 20-fold, to 63 mg g–1 biomass, in the presence of sesamol indicating that the acetyl-CoA destined for fatty acid biosynthesis was now being switched into secondary metabolite (GA3) accumulation. Synthesis of other metabolites from acetyl-CoA, such as bikaverin and carotenoids, though were not increased in the presence of sesamol. Metabolic switching is therefore feasible by judicious use of selected inhibitors that can thus block primary metabolic routes but which do not affect secondary metabolites.  相似文献   

18.
不同光环境下烟草光合特性及同化产物的积累与分配机制   总被引:1,自引:0,他引:1  
为了解烟草光合特性与光合作用同化产物的积累与分配对不同光环境的适应,以盆栽烟草为试验对象,于人工气候室中设置3种光照强度[遮阴(400±15)~(500±15) μmol·m-2·s-1;自然光强:(800±15)~(1000±15) μmol·m-2·s-1;高光强:(1500±15)~(1800±15) μmol·m-2·s-1]系统研究光照条件对烟草光合特性及光合作用同化产物在烟株-土壤系统分配的影响.结果表明: 随着光照强度的降低,烟草各组分生物量逐渐减小,根冠比降低.净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)均随光照强度的减弱呈下降趋势,胞间CO2浓度(Ci)升高;在强光条件下烟草最大净光合速率(Amax)、光饱和点(LSP)、光补偿点(LCP)、暗呼吸速率(Rd)均达到最大值,弱光条件则具有较大的表观量子效率.光照强度影响烟草对13C的吸收、积累与分配,弱光条件下,烟草富集的13C进入到根部的比例明显较少,更多的分配到地上部.由此可知,外界光环境的变化不仅显著影响烟草叶片的光合特性与生物量积累,也使光合碳在烟株-土壤系统的分配格局发生变化.  相似文献   

19.
The lipid productivity controlled by both of biomass and lipid content was really crucial for economic-feasibility of microalgae-based biofuels production. This study attempted at augmenting lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by different nitrogen manipulation including one-stage continuous N-sufficiency (OCNS), N-deprivation (OCND), N-limitation (OCNL), and also two-stage batch N-starvation (TBNS). Amongst four tested nitrogen manipulation strategies, OCNS performed remarkable promoting effect on cell metabolic growth and the maximum biomass was achieved by 7.39 g/L. Whereas TBNS regime induced the highest lipid content (over 50.5%). Only OCNL treatment augmented the lipid productivity by 232.37 mg/L/day, representing 1.25-fold more than TBNS and even as much as 5.06-fold more than that of OCND strategy. OCNL also strengthened the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acid (C18:1) which were inclined to high-quality biofuels-making. This might be due to that most part of energy and metabolic flux (e.g. acetyl-CoA) derived from TCA cycle and glycolysis flowed into fatty acids biosynthesis pathway (especially C18:1) response to OCNL manipulation. This study represented a pioneering work of utilizing OCNL for lipids production by C. subellipsoidea and clearly implied that OCNL might be a feasible way for algal lipid production on a commercial scale and also promoted the potential of C. subellipsoidea as an ideal biodiesel feedstock.  相似文献   

20.
Microalgal cultivation has been limited by the efficiency and costs associated with providing light energy, the most expensive and essential element needed for microalgal growth to a culture, particularly to cultures grown in a photo bioreactor (PBR). This study examined the economic benefits of using flashing illumination conditions in the context of microalgal cultivation. Chlamydomonas reinhardtii was cultivated under various conditions, including various inoculum sizes, light intensities, and durations of the light and dark periods. Our results showed that the highest microalgal growth efficiencies could be obtained using a large inoculum size under high intensity illumination accompanied by a 1:1 ratio of light and dark periods. The duration of the flashing light period was further optimized; permitting light energy savings of 62.5% of the light energy expended under continuous illumination conditions without reducing the biomass or lipid productivity. This study provides a more economical approach to cultivating C. reinhardtii via optimized flashing illumination without sacrificing microalgal growth or lipid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号