首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing‐induced flashing light regimes. In this study, photosynthetic efficiency and growth of the green microalga Chlamydomonas reinhardtii were measured using LED light to simulate light/dark cycles ranging from 5 to 100 Hz at a light‐dark ratio of 0.1 and a flash intensity of 1000 µmol m−2 s−1. Light flashing at 100 Hz yielded the same photosynthetic efficiency and specific growth rate as cultivation under continuous illumination with the same time‐averaged light intensity (i.e., 100 µmol m−2 s−1). The efficiency and growth rate decreased with decreasing flash frequency. Even at 5 Hz flashing, the rate of linear electron transport during the flash was still 2.5 times higher than during maximal growth under continuous light, suggesting storage of reducing equivalents during the flash which are available during the dark period. In this way the dark reaction of photosynthesis can continue during the dark time of a light/dark cycle. Understanding photosynthetic growth in dynamic light regimes is crucial for model development to predict microalgal photobioreactor productivities. Biotechnol. Bioeng. 2011;108: 2905–2913. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Microalgae are a promising feedstock for renewable biodiesel production. High productivity of biodiesel production from microalgae is directly related to growth rate as well as lipid content of cells. In the present study, an enrichment process in a continuous cultivation system was developed to screen a high-growth-rate microalga from a mixed culture of microalgal species; Chlorella vulgaris, Chlorella protothecoides, and Chlamydomonas reinhardtii were used as test organisms for our experiments. The time-dependent washout of mixed microalgal pool was executed to successfully enrich the C. reinhardtii, which exhibits the higher growth rate than C. vulgaris and C. protothecoides under turbidostat conditions within 75 h. The domination of C. reinhardtii in the mixed culture was validated by on-line monitoring of growth rate and flowcytometric analysis. For the time-efficient production of microalgal biomass, this screening process has a high potential to segregate the fast-growing microalgal strains from the pool of various uncharacterized microalgal species and random mutants.  相似文献   

3.
Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.  相似文献   

4.
The marine microalga Chlorella sp. was cultivated under mixotrophic conditions using methanol as an organic carbon source, which may also act to maintain the sterility of the medium for long-term outdoor cultivation. The optimal methanol concentration was determined to be 1% (v/v) for both cell growth and lipid production when supplying 5% CO2 with 450 μE/m2/sec of continuous illumination. Under these conditions, the maximal cell biomass and total lipid production were 4.2 g dry wt/L and 17.5% (w/w), respectively, compared to 2.2 g dry wt/L and 12.5% (w/w) from autotrophic growth. Cell growth was inhibited at methanol concentrations above 1% (v/v) due to increased toxicity, whereas 1% methanol alone sustained 1.0 g dry wt/L and 4.8% total lipid production. We found that methanol was preferentially consumed during the initial period of cultivation, and carbon dioxide was consumed when the methanol was depleted. A 12:12 h (light:dark) cyclic illumination period produced favorable cell growth (3.6 g dry wt/L). Higher lipid production was observed with cyclic illumination than with continuous illumination (18.6% (w/w) vs 17.5% (w/w)), and better lipid production was also obtained under mixotrophic rather than autotrophic conditions. Interestingly, under mixotrophic conditions with 12:12 (h) cyclic illumination, high proportions of C16:0, C18:0, and C18:1 were observed, which are beneficial for biodiesel production. These results strongly indicate that the carbon source is important for controlling both lipid composition and cell growth under mixotrophic conditions, and they suggest that methanol could be utilized to scale up production to an open pond type system for outdoor cultivation where light illumination changes periodically.  相似文献   

5.
It has been reported that flashing light enhances microalgal biomass productivity and overall photosynthetic efficiency. The algal growth kinetics and oxygen production rates under flashing light with various flashing frequencies (5 Hz-37 kHz) were compared with those under equivalent continuous light in photobioreactors. A positive flashing light effect was observed with flashing frequencies over 1 kHz. The oxygen production rate under conditions of flashing light was slightly higher than that under continuous light. The cells under the high frequency flashing light were also observed to be healthier than those under continuous light, particularly at higher cell concentrations. When 37 kHz flashing light was applied to an LED-based photobioreactor, the cell concentration was higher than that obtained under continuous light by about 20%. Flashing light may be a reasonable solution to overcome mutual shading, particularly in high-density algal cultures.  相似文献   

6.
In this study, growth performance and lipid content of two microalgae species Neochloris oleoabundans and Chlorella vulgaris are monitored by using three different types of sludge waste feedstocks obtained from the water treatment plants located in Bedonia, Borgotaro and Fornovo (Montagna2000 Spa, Province of Parma, Italy). The sludge waste is optimized in order to achieve microalgal growth media and dispose of the sewage sludge produced at the wastewater treatment facilities. Both photoautotrophic and heterotrophic growth conditions are applied to the microalgal cultivations. The growth parameters of microalgae strains such as cell concentration, growth rate, optical density, cell biovolume, photosynthetic pigments and lipid contents are monitored. The amounts of total dried lipid biomass, obtained by the biological conversion of the wet sludge waste, are determined. Lipid production of microalgal cells grown in the medium optimized from sludge waste from the Fornovo site provides the highest amount of microalgal lipid content for N. oleoabundans and C. vulgaris photoautotrophic cultivations, while sludge waste from the Bedonia site provides for N. oleoabundans heterotrophic cultivation.  相似文献   

7.
A newly designed and constructed LED illumination device for commercial cylindrical bioreactors is presented for application in microalgal cultivations and investigation of growth kinetics. An ideally illuminated volume is achieved by focusing the light toward the center of the reactor and thereby compensating the mutual shading of the cells. The relevant biomass concentration for homogeneous illumination depending on reactor radius was determined by light distribution measurements for Chlamydomonas to 0.2 g/L (equal 0.435 optical density at 750 nm). It is shown that cultivation experiments with the newly designed illumination device operated in batch mode can be successfully applied for determination of growth rates and photo conversion efficiencies. The exact knowledge of physiological reactions of specific strain(s) and the estimation of relevant parameters for scale‐up can be used for construction of economic pilot plant photobioreactors. The determination of light‐dependent kinetics of growth and product formation is the first necessary step to achieve this. A wide variety of different parameters can be examined like the effect of different illumination conditions (light intensity, frequency of day/night cycles, flashing light, light color…) and thereby for each single application specific, relevant, and interesting parameters will be examined.  相似文献   

8.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

9.
Microalgae are gaining importance as a source of high‐value bioproducts. However, data regarding optimization of algal productivity via variation of environmental factors are lacking. Here, we evaluated a novel lighting method for the enhancement of biomass and total fatty acid (TFA) productivities during algal cultivation. We cultivated six different algal strains (Chlorella vulgaris KCTC AG10002, Acutodesmus obliquus KGE18, Uronema sp. KGE03, Micractinium reisseri KGE19, Fragilaria sp., and Spirogyra sp.) under various lighting conditions—continuous light (CL), light‐dark cycle (LD), and continuous dark (CD)—with or without additional flashing light. We monitored dry cell weight (DCW) and TFA concentrations during cultivation. For each algal strain, the growth rate showed markedly different responses to the various lighting modes. The growth rates of C. vulgaris KCTC AG10002 (1.34‐fold DCW increase, LD with flash), A. obliquus KGE18 (5.16‐fold DCW increase, LD with flash), Uronema sp. KGE03 (2.77‐fold DCW increase, CL with flash), and M. reisseri KGE19 (1.52‐fold DCW increase, CL with flash) markedly increased in response to flashing light. Additionally, in some algal strains cultivated under the LD mode, the flashing light treatment induced increased TFA concentrations (C. vulgaris, 1.19‐fold increase; A. obliquus, 2.59‐fold increase; and M. reisseri, 3.31‐fold increase). Phytohormone analysis of M. reisseri revealed increases in growth rate and TFA concentrations, associated with phytohormone induction via flashing light (e.g. 2.93‐fold increase in gibberellic acid); hence, flashing light can promote substantial alterations in algal metabolism.  相似文献   

10.
Cover Image     
Microalgae have been shown as a potential bioresource for food, biofuel, and pharmaceutical products. During the growth phases with corresponding environmental conditions, microalgae accumulate different amounts of various metabolites. We quantified the neutral lipids accumulation and analyzed the swimming signatures (speed and trajectories) of the motile green alga, Dunaliella primolecta, during the lag–exponential–stationary growth cycle at different nutrient concentrations. We discovered significant changes in the neutral lipid content and swimming signatures of microalgae across growth phases. The timing of the maximum swimming speed coincided with the maximum neutral lipid content and both maxima occurred under nutrient stress at the stationary growth phase. Furthermore, the swimming trajectories suggested statistically significant changes in swimming modes at the stationary growth phase when the maximum intracellular neutral lipid content was observed. Our results provide the potential exploitation of microalgal swimming signatures as possible indicators of the cultivation conditions and the timing of microalgal harvest to maximize the lipid yield for biofuel production. The findings can also be implemented to explore the production of food and antibiotics from other microalgal metabolites with low energy costs.  相似文献   

11.
The specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana decreased under square-wave light/dark cycles of medium duration, 13–87 s, in comparison to continuous illumination. Three experiments were done in three different turbidostats at saturating and sub-saturating light intensities during the light period, 240–630 μmol m−2 s−1. Within each experiment the light intensity during the light periods of the intermittent light regimes was equal and this intensity was also applied under continuous illumination. The specific growth rate decreased proportional or more than proportional to the fraction of time the algae were exposed to light; this light fraction ranged from 0.32 to 0.88. We conclude that under these light regimes the chlorophyta C. reinhardtii and C. sorokiniana are not able to store light energy in the light period to sustain growth in the dark period at the same rate as under continuous illumination. C. reinhardtii increased its specific light absorbing surface by increasing its chloropyll-a content under light/dark cycles of 13 s duration and a light fraction of 0.67 at 240 μmol m−2 s−1; the chloropyll-a content was twice as high under intermittent illumination in comparison to continuous illumination. The combination of a higher specific light absorption together with a lower specific growth rate led to a decrease of the yield of biomass on light energy under intermittent illumination.  相似文献   

12.
Chlamydomonas sp. ICE-L, isolated from Antarctic coastal marine environments, was selected as a high lipid producer, which may be useful for biodiesel production. The lipophilic fluorescent dye BODIPY505/515 was used to determine the algal lipid content. Lipid bodies stained with BODIPY505/515 have a characteristic green fluorescence, and their volumes were determined using the sphere volume formula. In this study, lipid accumulation by Chlamydomonas ICE-L was analyzed under different cultivation conditions (nitrogen deficiency and UV-B radiation). The results demonstrated that nitrogen deficiency and UV-B radiation could significantly promote the accumulation of lipid content per cell. The highest yields of total lipid content (reaching 84?μL?L?1) were obtained in full Provasoli medium after 12?days of cultivation, but not in the nitrogen-deficient medium. The inoculum used in this experiment was obtained from the late-exponential growth phase. The main reason was that the cell numbers in nitrogen-deficient medium had not increased and total lipid contents were offset by the lower growth rate. Considering the high lipid content in Chlamydomonas sp. ICE-L, this alga might be a promising alternative species for production of microalgal oil for the production of renewable biodiesel in the future.  相似文献   

13.
To promote the economic feasibility of Nannochloropsis oculata, efficacy of using polyethylene glycol (PEG) to increase microalgal growth and lipid accumulation was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0–5 % (w/v) PEG-6000, and followed by exploring the effects of PEG molecular weights (400, 600, 2,000, 4,000, 6,000, and 20,000) on microalgal growth, size, as well as on yields of biomass, total lipids, and eicosapentaenoic acid. In addition, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also investigated to evaluate its adaptability for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress (Π) in the range of 2.465–2.472 MPa can raise microalgal growth. The PEG with higher molecular weight exhibited greater efficacy of growth promotion but less lipid content under equal concentration. In this study, 0.5 % (w/v) PEG-20000 (Π = 2.466 MPa) remarkably enhanced microalgal growth without interference of intracellular lipid productivity and cellular size, yielding >50 % (w/w) increases in biomass, total lipid, and eicosapentaenoic acid amounts after 7 days that provided the optimal condition for microalgal cultivation. These positive effects possibly resulted from the moderate enhancement of osmotic stress in the medium and stronger chaotrope-like behavior from higher molecular weight PEG. With further verification that 0.5 % (w/v) PEG-20000 enabled to reduce the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated cultivation offers a feasible means for mass culture of N. oculata in closed setting.  相似文献   

14.
Young zygotes from crosses of Chlamydomonas reinhardtii Dang. mutant and wild-type strains were incubated, in the presence or absence of light and/or nitrogen to determine whether continuation of conditions inducing gamete formation permits zygospore formation without loss of viability. Different culture media, continuous illumination vs. dark incubation and various durations of the maturation period were tested, for effect on zygospore germination efficiency, zygospore “burst size” and zoospore viability. Following either the routine maturation procedure of dark incubation on standard minimal medium, or following a new procedure of incubation under continuous illumination on N-free medium, zygospore formation can be ensured and high germination efficiencies obtained within 3 days after mating. Tetrad analysis indicates meiosis occurs normally whether zygotes have been matured in the presence or absence of light or nitrogen. Preliminary data suggest an effect of increased maturation time on the transmission of cytoplasmic genes, if a N-free continuous illumination maturation protocol is followed. Two experimental approaches for the maturation of C. reinhardtii zygotes are suggested and advantages of each are discussed.  相似文献   

15.
Chlorella kessleri was cultivated in artificial wastewater using diurnal illumination of 12 h light/12 h dark (L/D) cycles. The inoculum density was 105 cells/mL and the irradiance in light cycle was 45 μmol m2 s−1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower than that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested thatC. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1 mg NO3 -N/L from 168.1 mg NO3 -N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.  相似文献   

16.
We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m2/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16–C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.  相似文献   

17.
Abstract

For a feasible microalgae biodiesel, increasing lipid productivity is a key parameter. An important cultivation parameter is light wavelength (λ). It can affect microalgal growth, lipid yield, and fatty acid composition. In the current study, the mixture design was used as an alternative to model the influence of the λ on the Dunaliella salina lipid productivity. The illumination was considered to be the mixture of different λ (the light colors blue, red, and green). All experiments were performed with and without sodium acetate (4?g/L), as carbon source, allowing the identification of the impact of the cultivation regimen (autotrophic or mixotrophic). Without sodium acetate, the highest lipid productivity was obtained using blue and red light. The use of mixotrophic cultivations significantly enhanced the results. The optimum obtained result was mixotrophic cultivation under 65% blue and 35% green light, resulting in biomass productivity of 105.06 mgL?1day?1, a lipid productivity of 53.47 mgL?1day?1, and lipid content of 50.89%. The main fatty acids of the oil obtained in this cultivation were oleic acid (36.52%) and palmitic acid (18.31%).  相似文献   

18.
Effects of light intensity, nitrogen availability, and inoculum density on growth and the content of esterified fatty acids (FA), chlorophylls, and carotenoids in Desmodesmus sp. 3Dp86E-1 chlorophyte alga isolated from the White Sea hydroid Dynamena pumila L. were investigated. The growth of algae in the complete BG-11 medium was not limited by irradiances up to 480 μE/(m2 s) PAR but depended on the inoculum density. Under nitrogen starvation conditions, high-intensity light retarded growth of the microalga; this effect was less pronounced in the cultures initiated at high inoculum densities. The highest FA percentage in biomass (30% at the 3rd day of cultivation) was detected in nitrogen-starving cultures grown under high light conditions; however, the highest volumetric FA content (0.25 g/L) was attained on a complete medium at 480 μE/(m2 s). An increase in the content of oleic acid (18:1) on the background of a decrease in linolenic acid (18:3) was characteristic of the microalga under stress conditions. The microalga was found to be non-carotenogenic. Nitrogen starvation brought about a dramatic decrease in chlorophyll content on the background of relatively constant carotenoid content. On nitrogen-deplete medium, the high light did not trigger the adaptive response of the pigment apparatus. The changes in absorption spectra of Desmodesmus sp. 3Dp86E-1 cell suspensions reflected the increase in relative contribution of carotenoids to light absorption by the microalgal cells; these changes were tightly related with FA accumulation. The mechanisms of acclimation of Desmodesmus sp. 3Dp86E-1 to high light and nitrogen starvation are discussed in view of possible biotechnological applications of this alga.  相似文献   

19.
To investigate the effects of bacteria contaminated in microalgal cultivation, several bacteria were isolated from four photobioreactors for Chlorella sp. KR-1 culture. A total of twenty-one bacterial strains isolated from the reactors and identified by 16S rRNA gene sequencing. Six bacteria, which were found from more than two reactors of the four photobioreactors, were introduced into co-culturing experiments with Chlorella sp. KR-1. Then, the bacterial influences on the productivity of microalgal biomass and lipids were assessed in the photoautotrophic- and mixotrophic microalgal cultivation by comparing them with axenic culture of Chlorella sp. KR-1. The results showed that both biomass and lipid production were significantly enhanced under mixotrophic conditions compared to photoautotropic conditions. However, an excess ratio (more than 10%) of bacterial cells to microalgal cells at the initial stage of mixotrophic cultivation has limited the growth of Chlorella sp. KR-1 because of the relatively fast growth of bacteria, especially under mixotrophic conditions. Moreover, it was proven that the strong biofilm formability of Sphingomonas sp. MB6 is the responsible strain to cause the biomass aggregation observed during the early stage of co-culture. The high abundance of Sphingomonas sp. MB6 during early cultivation period shown by qPCR results was also well corresponded with the period shown a strong biofilm formation, which suggested the applicability of qPCR to monitor a specific bacterial group in a microalgal culture.  相似文献   

20.
The dinoflagellate Prorocentrum minimum (Pavillard) Schiller is known to be a major bloom-causing microalga in the southern ocean of the Korean peninsula. The acclimation of this alga to darkness for 10 days was investigated by analyzing the content of various lipids, such as phospholipid (PL), galactolipid (GL), and triacylglyceride (TAG). Actively growing cultures of the alga under normal growth conditions (14:10 h LD [light:dark] cycle) were transferred to a growth chamber under conditions of no light and no carbon sources in the medium, and the culture was continued for another 10 days. The results showed that the content of TAG and GL decreased gradually during dark incubation, whereas the total PL content changed little; PC, PE, and PG decreased; and PS, PA, and PI increased. An increase in the activity of β-oxidation and isocitrate lyase (ICL, a glyoxylate cycle enzyme) paralleled the decrease of TAG and GL. These observations strongly suggested that TAG and GL were utilized as alternative carbon sources by the cells under the prolonged dark cultivation. Light treatment of the cells cultivated in the dark for 10 days allowed them to attain the lipid composition that was observed in cells grown in light. These results strongly suggested that the cells maintained their metabolic integrity without unrecoverable cellular damages or cell death during 10 days of dark cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号