首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A phylogenetic hypothesis of termite relationships was inferred from DNA sequence data. Seven gene fragments (12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase I, cytochrome oxidase II and cytochrome b) were sequenced for 40 termite exemplars, representing all termite families and 14 outgroups. Termites were found to be monophyletic with Mastotermes darwiniensis (Mastotermitidae) as sister group to the remainder of the termites. In this remainder, the family Kalotermitidae was sister group to other families. The families Kalotermitidae, Hodotermitidae and Termitidae were retrieved as monophyletic whereas the Termopsidae and Rhinotermitidae appeared paraphyletic. All of these results were very stable and supported with high bootstrap and Bremer values. The evolution of worker caste and foraging behavior were discussed according to the phylogenetic hypothesis. Our analyses suggested that both true workers and pseudergates (“false workers”) were the result of at least two different origins. Our data support a traditional hypothesis of foraging behavior, in which the evolutionary transition from a one-piece type to a separate life type occurred through an intermediate behavioral form.  相似文献   

2.
Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites were analyzed without cultivation of these microorganisms. A portion of the 16S rDNA (ca. 850 bp) was amplified directly from DNA of the mixed population in the gut by PCR and cloned. A total of 30 spirochetal phylotypes affiliated with the treponemes were identified from four termite species and they were compared with those already reported from other termites. They represented separate lines of descent from any known species of Treponema, and they were divided into two discrete clusters; one was related to Spirochaeta stenostrepta and S. caldaria, and the other was grouped together with members of the Treponema bryantii subgroup. Although some sequences from evolutionarily related termites showed close similarity, most of the sequences of spirochetes were dissimilar among different termite species, and spirochetal sequences from a single termite species occurred in several distinct phylogenetic positions. These findings suggest that termites constitute a rich reservoir of novel spirochetal diversity and that evolution of the symbiosis is not simple.  相似文献   

3.
Western Ghats of Karnataka, an important biodiversity hot spot in the world, rich in insect fauna including termites. Diversity of termites from this region poorly understood. In the present study, we have redescribed 12 species and termites belonging to two families viz., Rhinotermitidae and termitidae based on morphological and molecular differences employing mitochondrial 16s rRNA. Further we have employed Bayesian inference in order to understand phylogenetic relationships among different termite species studied. The integrative taxonomic approach was successful in delimiting the species studied in the present investigation.  相似文献   

4.
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.  相似文献   

5.
The first proctodeal (P1) segment in the hindgut of certain higher termites shows high alkalinity. We examined the bacterial diversity of the alkaline P1 gut segments of four species of higher termites by T-RFLP and phylogenetic analyses based on PCR-amplified 16S rRNA genes. The bacterial community of the P1 segment was apparently different from that of the whole gut in each termite. Sequence analysis revealed that Firmicutes (Clostridia and Bacilli) were dominant in the P1 segments of all four termites; however, the phylogenetic compositions varied among the termites. Although some of the P1 segment-derived sequences were related to the sequences previously reported from the alkaline digestive tracts of other insects, most of them formed phylogenetic clusters unique to termites. Such termite P1 clusters were distantly related to known bacterial species as well as to sequences reported from alkaline environments in nature. We successfully obtained enrichment cultures of Clostridia- and Bacilli-related bacteria, including putative novel species under anaerobic alkaline conditions from the termite guts. Our results suggest that the alkaline gut region of termites harbors unique bacterial lineages and are expected to be a rich reservoir of novel alkaliphiles yet to be cultivated.  相似文献   

6.
Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase gene (nifH) was directly amplified from DNA extracted from the mixed population in the termite gut. Analysis of deduced amino acid sequences of the products of the clonally isolated nifH genes revealed the presence of diverse nifH sequences in most of the individual termite species, and their constituents were considerably different among termite species. A majority of the nifH sequences from six lower termites, which showed significant levels of nitrogen fixation activity, could be assigned to either the anaerobic nif group (consisting of clostridia and sulfur reducers) or the alternative nif methanogen group among the nifH phylogenetic groups. In the case of three higher termites, which showed only low levels of nitrogen fixation activity, a large number of the sequences were assigned to the most divergent nif group, probably functioning in some process other than nitrogen fixation and being derived from methanogenic archaea. The nifH groups detected were similar within each termite family but different among the termite families, suggesting an evolutionary trend reflecting the diazotrophic habitats in the symbiotic community. Within these phylogenetic groups, the sequences from the termites formed lineages distinct from those previously recognized in studies using classical microbiological techniques, and several sequence clusters unique to termites were found. The results indicate the presence of diverse potentially nitrogen-fixing microbial assemblages in the guts of termites, and the majority of them are as yet uncharacterized.  相似文献   

7.
Molecular and biochemical genetic analyses have revealed that many marine invertebrate taxa, including some well-studied and presumably cosmopolitan species, are actually complexes of sibling species. When morphological differences are slight and estimated divergence times are old, data suggest either unusually high rates of sequence evolution or long-term morphological stasis. Here, five gene regions (mitochondrial cytochrome oxidase subunit I and large-subunit ribosomal 16S rDNA and nuclear ITS1, 5.8S rDNA, and ITS2) were analyzed in four geographic samples of the meiobenthic harpacticoid copepod Cletocamptus deitersi. Molecular sequences revealed four extremely differentiated molecular lineages with unalignable nuclear intergenic spacers and mitochondrial uncorrected divergences reaching 25% (cytochrome oxidase) and 36% (16S rDNA). These levels of divergence are greater than those reported previously for congeneric species in diverse invertebrate taxa, including crustaceans. The nominally intraspecific divergence matches or exceeds the corresponding divergence from a known congener (Cletocamptus helobius). A molecular clock applied to the cytochrome oxidase subunit I data suggests that these lineages split in the Miocene, consistent with the fossil record of a North American Cletocamptus from the same period. Morphological differences among the major lineages are subtle but congruent with the patterns of genetic differentiation. Our conclusion, based on concordant patterns of variation in two mitochondrial and three nuclear gene regions, as well as morphological observations, is that C. deitersi in North America is composed of at least four separate species by the genealogical concordance, phylogenetic, and morphological-species criteria. Alternative explanations for the deep phylogenetic nodes and apparent morphological stasis, including high rates of sequence evolution, balancing selection, and genetic signatures of historical events, are considered unlikely.  相似文献   

8.

Background  

Soil-feeding termites are particularly interesting models for studying the effects of fragmentation, a natural or anthropic phenomenon described as promoting genetic differentiation. However, studying the link between fragmentation and genetics requires a method for identifying species unambiguously, especially when morphological diagnostic characters are lacking. In humivorous termites, which contribute to the fertility of tropical soils, molecular taxonomy and phylogenetic relationships are rarely studied, though mitochondrial and nuclear molecular markers are widely used in studies of pest termites. Here, we attempt to clarify the taxonomy of soil-feeding colonies collected throughout the naturally fragmented Lopé Reserve area (Gabon) and morphologically affiliated to Cubitermes sp. affinis subarquatus. The mitochondrial gene of cytochrome oxidase II (COII), the second nuclear rDNA internal transcribed spacer (ITS2) and five microsatellites were analyzed in 19 colonies.  相似文献   

9.
Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister-group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites+Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus+termites), and a further series of compensatory base changes in this stem-loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae+Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.  相似文献   

10.
In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus-growing termite mutualistic system.  相似文献   

11.
The satyrine butterfly subtribe Mycalesina has undergone one of the more spectacular evolutionary radiations of butterflies in the Old World tropics. Perhaps the most phenotypically pronounced diversification of the group has occurred in the Malagasy region, where 68 currently recognized species are divided among five genera. Here, we report the results of phylogenetic analyses of sequence data from the cytochrome c oxidase II and cytochrome b mitochondrial genes, for a total of 54 mycalesine taxa, mostly from Madagascar. These molecular data complement an existing data set based on male morphological characters. The molecular results support the suggestion from morphology that three of the five Malagasy genera are paraphyletic and support the monophyly of at least three major morphological clades. Novel hypotheses of terminal taxon pairs are generated by the molecular data. Dense taxon sampling appears to be crucial for elucidating phylogenetic relationships within this large radiation. A potentially complex scenario for the origin of Malagasy mycalesines is proposed.  相似文献   

12.

Background

Although termites are considered as agricultural pests, they play an important role in maintaining the ecosystem. Therefore, it matters to investigate the farmers’ perception of the impacts of the termites on the agriculture and their indigenous utilization.

Methods

A semi-structured questionnaire was used to interview 94 farmers through 10 villages of Atacora department, in the northwestern region of Benin, to obtain information for the development of successful strategies of termite management and conservation. Their perceptions on the importance and management of termites along with the indigenous nomenclature and utilization of termite mounds were assessed. Termite species identified by farmers were collected and preserved in 80% alcohol for identification.

Results

Eight crops were identified by farmers as susceptible to termites with maize, sorghum, and yam as being the most susceptible. According to farmers, the susceptibility to termites of these crops is due to their high-water content and sweet taste. A total of 27 vernacular names of termites were recorded corresponding to 10 species, Amitermes evuncifer, Macrotermes subhyalinus, and Trinervitermes oeconomus being the most damaging termite species. All the names given to termite species had a meaning. The drought was identified by farmers as the main factor favouring termite attacks. Demolition of termite mounds in the fields was the most commonly reported control method. Salt and other pesticides were commonly used by farmers to protect stored farm products. The lack of effective control methods is the main constraint for termite management. In northwestern Benin, farmers reported different purpose utilizations of termite mounds and termites.

Conclusions

The study has shown that farmers perceived termites as pests of several agricultural crops and apply various indigenous control practices whose efficiency need to be verified. Utilization of termites and termite mound soil as food and medicinal resources underlines the need for a more focused approach to termite control for the conservation of non-pest termite species. The sensitization of farmers on the importance of termites as well as the development of an integrated control method to combat termite pests proved necessary.
  相似文献   

13.
Despite more than half a century of research, the evolutionary origin of termites remains unresolved [1] [2] [3]. A clear picture of termite ancestry is crucial for understanding how these insects evolved eusociality, particularly because they lack the haplodiploid genetic system associated with eusocial evolution in bees, ants, wasps and thrips [4] [5]. Termites, together with cockroaches and praying mantids, constitute the order Dictyoptera, which has been the focus of numerous conflicting phylogenetic studies in recent decades [6] [7] [8] [9] [10] [11] [12]. With the aim of settling the debate over the sister-group of termites, we have determined the sequences of genes encoding 18S ribosomal RNA, mitochondrial cytochrome oxidase subunit II (COII) and endogenous endo-beta-1, 4-glucanase (EG) from a diverse range of dictyopterans. Maximum parsimony and likelihood analyses of these sequences revealed strong support for a clade consisting of termites and subsocial, wood-feeding cockroaches of the genus Cryptocercus. This clade is nested within a larger cockroach clade, implicating wood-feeding cockroaches as an evolutionary intermediate between primitive non-social taxa and eusocial termites.  相似文献   

14.
A phylogenetic and systematic study of Orius species (Heteroptera: Anthocoridae) from Korea has been conducted using both morphological and molecular characters. Thirty morphological character states were coded for 10 strains of 9 species. Five molecular markers, partial cytochrome c oxidase I (COI), cytochrome b (CytB), 16S rRNA (16S), 18S rRNA (18S), and 28S rRNA (28S), from mitochondrial and nuclear genes, were tested. Phylogenetic analyses based on molecular data were conducted by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic (BP) analyses. Analysis of morphological data was performed using the parsimony programs NONA, and the combined dataset of morphological and molecular data was analyzed using BP analyses. The results of this study indicate that use of COI and CytB enabled relatively effective identification of species, whereas the sequences of 16S, 18S and 28S did not enable identification of closely related species such as Orius minutus and O. strigicollis. We discuss the usefulness of the five molecular markers for determining phylogenetic relationships and identifying the species.  相似文献   

15.
Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant–termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant–termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.  相似文献   

16.
Yamada A  Inoue T  Noda S  Hongoh Y  Ohkuma M 《Molecular ecology》2007,16(18):3768-3777
Nitrogen fixation by gut microorganisms is one of the crucial aspects of symbiosis in wood-feeding termites since these termites thrive on a nitrogen-poor diet. In order to understand the evolution of this symbiosis, we analysed the nitrogenase structural gene nifH in the gut microbial communities. In conjunction with the published sequences, we compared approximately 320 putatively functional NifH protein sequences obtained from a total of 19 termite samples that represent all the major branches of their currently proposed phylogeny, and from one species of the cockroach Cryptocercus that shares a common ancestor with termites. Using multivariate techniques for clustering and ordination, a phylogeny of NifH protein sequences was created and plotted variously with host termite families, genera, and species. Close concordance was observed between NifH communities and the host termites at genus level, but family level relationships were not always congruent with accepted termite clade structure. Host groups examined included basal families (Mastotermitidae, Termopsidae, Kalotermitidae, as well as Cryptocercus), the most derived lower termite family Rhinotermitidae, and subfamilies representing the advanced and highly diverse apical family Termitidae (Macrotermitinae, Termitinae, and Nasutitermitinae). This selection encompassed the major nesting and feeding styles recognized in termites, and it was evident that NifH phylogenetic divergence, as well as the occurrence of alternative nitrogenase-type NifH, was to some extent dependent on host lifestyle as well as phylogenetic position.  相似文献   

17.
Several different taxa within the genera Dacus and Ceratitis (Diptera: Tephritidae) are important agricultural pests in Sub-Saharan Africa. Although the status of many of these taxa as distinct species and their phylogenetic relationships is unclear, it is clear that these pests use a wide range of host plants and are highly invasive. The great potential for economic damage inflicted by these pests requires the ability to make accurate and reliable taxonomic identification of specimens. However, many limitations and uncertainties are encountered when these species are examined using traditional approaches based on morphological identification techniques. We describe here the amplification and analysis of DNA sequences from the mitochondrial cytochrome oxidase II (COII)-tRNA(lys)-tRNA(ASP) genes from individuals of various Dacus and Ceratitis species and populations from Sub-Saharan Africa. The variation detected in the DNA sequences of these individuals is used both for clarification of their taxonomic status and the analysis of phylogenetic relationships of these taxa.  相似文献   

18.
Nucleotide sequences from two nuclear loci, alcohol dehydrogenase and internal transcribed spacer-1 of the nuclear ribosomal DNA repeats, and two mitochondrial genes, cytochrome oxidase I and cytochrome oxidase II, were determined from nine species in the Drosophila saltans species group. The partition homogeneity test and partitioned Bremer support were used to measure incongruence between phylogenetic hypotheses generated from individual partitions. Individual loci were generally congruent with each other and consistent with the previously proposed morphological hypothesis, although they differed in level of resolution. Since extreme conflict between partitions did not exist, the data were combined and analyzed simultaneously. The total evidence method gave a more resolved and highly supported phylogeny, as indicated by bootstrap proportions and decay indices, than did any of the individual analyses. The cordata and elliptica subgroups, considered to have diverged early in the history of the D. saltans group, were sister taxa to the remainder of the saltans group. The sturtevanti subgroup, represented by D. milleri and D. sturtevanti, occupies an intermediate position in this phylogeny. The saltans and parasaltans subgroups are sister clades and occupy the most recently derived portion of the phylogeny. As with previous morphological studies, phylogenetic relationships within the saltans subgroup were not satisfactorily resolved by the molecular data.   相似文献   

19.
Disturbance, particularly agricultural expansion is one of the major threats to the biodiversity and ecological functions of tropical and sub-tropical ecosystems. In this regard, we examined changes in the species richness, abundance, and diversity of termites across different disturbance treatments in a sub-tropical semi-arid savanna in south eastern Zimbabwe. Nine transects (100?×?2 m) representing three habitat disturbance treatments (primary woodland; grazing area; agricultural field) were sampled for termites using a rapid biodiversity assessment protocol. Termites were more abundant and species-rich in primary woodland and grazing area than in the agricultural field. Twelve termite species from three sub-families were present, with Microtermes sp. constituting 35% of the identified termite species. Termite feeding group structure differed significantly among land-use types, and of all termites present, wood-feeding termites were the most abundant while soil-feeders were rare in the agricultural field. In conclusion the observed pattern in termite species richness and relative abundance indicates that termites are very resilient to natural disturbance and might actually benefit from some natural disturbances like they did in the grazing area of this study, but they are not resilient to extreme anthropogenic disturbance. Although there was no notable difference in termite species richness and relative abundance between agricultural field and primary woodland, the pattern observed across the three sites may be potential support for the IDH suggesting that intermediate levels of physical disturbance intensity influence the structure and functioning of termite assemblages in semi-arid savanna.  相似文献   

20.
The relationships, as well as identification of species, within Helobdella (Glossiphoniidae) were explored through phylogenetic analysis and through an overview of the historical systematics of the genus. The phylogeny was determined using morphological data and the mitochondrial gene sequences of cytochrome c oxidase subunit I and nicotinamide adenine dinucleotide dehydrogenase subunit I. A broad representation of 15 ingroup species was sampled, including 10 individuals from South America. Outgroup taxa included five species of Haementeria . Cladistic analysis of all available data resulted in one most parsimonious tree. Results shed light on genetic divergence of members classified as the same species, including those that are not monophyletic. Historically, external morphological characters have played a significant role in contributing to the confusion in the classification of H. triserialis, H. papillata, H. lineata and H. fusca in North America. Re-evaluation of Verril's Clepsine papillifera var. b and var. d in a phylogenetic context provides a solution. Additionally, the genera Adaetobdella, Acritobdella, Dacnobdella and Gloiobdella created by Ringuelet are returned to Helobdella based on overlapping morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号