首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The location of the covalently attached carbohydrate residue of the S-layer glycoprotein from Clostridium thermohydrosulfuricum L111-69 was determined by electron microscopical procedures after converting the hydroxyl groups of the carbohydrate chains into carboxyl groups by succinylation. The introduction of carboxyl groups was examined by labelling with polycationized ferritin (PCF; a net positively charged topographical marker for electron microscopy). Cyanogen bromide was used for activating vicinal hydroxyl groups of the carbohydrate chains which could then react with amino groups of amino carbonic acids or ferritin. The amount of covalently bound ferritin was determined by freeze-etching and UV-measurement. Both, succinylation experiments and covalent attachment of ferritin confirmed that at least a considerable portion of the carbohydrate residue must be located on the S-layer surface.  相似文献   

2.
Labelling experiments using a positively charged topographical marker for electron microscopy, polycationized ferritin, showed that the S-layers of two closely related clostridia Clostridium thermohydrosulfuricum L111-69 and C. thermosaccharolyticum D120-70 do not exhibit a net negative charge, as usually observed for bacterial cell surfaces. Chemical modification of reactive sites confirmed that amino and carboxyl groups are exposed on the S-layer surface of both strains. Amino-specific, bifunctional agents crosslinked both S-layer lattices. Studies with carbodiimides revealed that only the S-layer surface of C. thermohydrosulfuricum L111-69 had amino and carboxyl groups closely enough aligned to permit electrostatic interactions between the constituent protomers. The regular structure of this S-layer lattice was lost upon converting the carboxyl groups into neutral groups by amidation. Disintegration of both S-layer lattices occurred upon N-acetylation or N-succinylation of the free amino groups. Adhesion experiments showed that in neutral and weakly alkaline environment whole cells of C. thermosaccharolyticum D120-70 exhibited a stronger tendency to bind to charged surfaces than whole cells of C. thermohydrosulfuricum L111-69, but showed a lower tendency to bind to hydrophobic materials.  相似文献   

3.
In this paper, the importance of charged amino and carboxyl groups for the integrity of the cell surface layer (S-layer) lattice from Bacillus coagulans E38-66 and for the self-assembly of the isolated subunits was investigated. Amidination of the free amino groups which preserved their positive net charge had no influence on both. On the other hand, acetylation and succinylation, which converted the amino groups into either neutral or negatively charged groups, and amidation of carboxyl groups were accompanied by the disintegration or at least by the loss of the regular structure of the S-layer lattice. Treatment of S-layer monolayers with the zero-length cross-linker carbodiimide led to the introduction of peptide bonds between activated carboxyl groups and amino groups from adjacent subunits. This clearly indicated that in the native S-layer lattice the charged groups are located closely enough for direct electrostatic interactions. Under disrupting conditions in which the S-layer polypeptide chains were unfolded, 58% of the Asx and Glx residues could be amidated, indicating that they occur in the free carboxylic acid form. As derived from chemical modification of monolayer self-assembly products, about 90% of the lysine and 70% of the aspartic and glutamic acid residues are aligned on the surface of the S-layer protein domains. This corresponded to 45 amino groups and to 63 carboxyl groups per S-layer subunit. Labelling experiments with macromolecules with different sizes and charges and adsorption studies with ion-exchange particles revealed a surplus of free carboxyl groups on the inner and on the outer faces of the S-layer lattice. Since the carboxyl groups on the outer S-layer face were accessible only for protein molecules significantly smaller then the S-layer protomers or for positively charged, thin polymer chains extending from the surface of ion-exchange beads, the negatively charged sites must be located within indentations of the corrugated S-layer protein network. This was in contrast to the carboxyl groups on the inner S-layer face, which were found to be exposed on elevations of the S-layer protein domains (D. Pum, M. Sára, and U.B. Sleytr, J. Bacteriol. 171:5296-5303, 1989).  相似文献   

4.
D Pum  M Sra    U B Sleytr 《Journal of bacteriology》1989,171(10):5296-5303
In freeze-etched preparations, whole cells from Bacillus coagulans E38-66 exhibited an oblique S-layer lattice (a = 9.4 nm; b = 7.4 nm; gamma = 80 degrees). The three-dimensional structure of the crystalline array was characterized by optical and computer image analysis. The lattice showed two distinctly shaped types of pores. In vitro self-assembly of isolated subunits yielded flat sheets and open-ended cylinders composed of two back-to-back monolayers. Unlike whole cells, in vitro self-assembly products were capable of binding polycationized ferritin (pI, approximately 11). This showed that only the inner S-layer face adhering to the peptidoglycan-containing layer in whole cells was net negatively charged. S-layer monomers and/or oligomers were capable of generating a closed monolayer with oblique symmetry on poly-L-lysine-coated supports. The monolayer had a typical crazy paving appearance, with numerous crystal boundaries. The handedness of the oblique lattice and ability to bind polycationized ferritin revealed that the subunits had bound with the outer, not net negatively charged face to the poly-L-lysine-coated supports. Carbodiimide-activated carboxyl groups on either cell wall fragments or self-assembly products could covalently bind high-molecular-weight nucleophiles such as ferritin. This confirmed the location of negatively charged carboxyl groups on the outermost surface of both S-layer faces. The difference in pH optimum for carbodiimide activation indicated a preponderance of alpha- and beta-carboxyl groups on the inner S-layer face and a preponderance of beta- and gamma-carboxyl groups on the outer S-layer face.  相似文献   

5.
M Sra  D Pum    U B Sleytr 《Journal of bacteriology》1992,174(11):3487-3493
We investigated the permeability properties of the oblique S-layer lattice from Bacillus coagulans E38-66 after depositing cell wall fragments on a microfiltration membrane, cross-linking the S-layer protein with glutaraldehyde, and degrading the peptidoglycan with lysozyme. Comparative permeability studies on such multilayered S-layer membranes and suspended S-layer vesicles from thermophilic members of the family Bacillaceae with use of the space technique (M. Sára and U. B. Sleytr, J. Bacteriol. 169:4092-4098, 1987) revealed identical molecular exclusion limits (M. Sára and U. B. Sleytr, J. Membr. Sci. 33:27-49, 1987). Examination of the S-layer lattice from B. coagulans E38-66 with the S-layer membrane technique revealed unhindered passage for molecules up to the size of myoglobin (M(r) 17,000). The molecular dimensions of this protein (2.8 by 3.2 by 4.5 nm) correspond approximately to the size of the ovoid-shaped pore previously shown by high-resolution electron microscopy of negatively stained S-layer self-assembly products (D. Pum, M. Sára, and U. B. Sleytr, J. Bacteriol. 171:5296-5303, 1989). Chemical modification of the S-layer protein and comparative labeling, adsorption, and permeability studies clearly demonstrated that (i) in the native state, free amino and carboxyl groups are present on the outer S-layer face and in the interior of the pores and (ii) electrostatic interactions between these groups prevent unspecific adsorption of the S-layer in vivo.  相似文献   

6.
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface.  相似文献   

7.
The crystalline cell surface layer (S-layer) from Bacillus stearothermophilis PV72 was used as a matrix for reversible immobilization of -d-galactosidase via disulphide bonds. In order to obtain an immobilization matrix stable towards acid, alkali and reducing agents such as dithiothreitol (DTT), the S-layer subunits were first cross-linked with glutaraldehyde. This was done in a way whereby 75% of the free amino groups remained unmodified, and then could be completely converted into sulphhydryl groups upon reaction with the monofunctional imidoester iminothiolane. After activation of the sulphhydryl groups with 2,2-dipyridyldisulphide, 550 g -d-galactosidase could be immobilized per milligram of S-layer protein, which corresponds to one -d-galactosidase molecule [relative molecular mass (Mr), 116000] per two S-layer subunits (Mr, 130 000). At least 90% of the sulphhydryl groups from the S-layer protein could be regenerated for further activation by cleaving the disulphide bonds with DTT. In comparative studies -d-galactosidase was linked to carbodiimide-activated carboxyl groups of the S-layer protein.Correspondence to: M. Sára  相似文献   

8.
Summary The intestinal epithelium of Ascaris suum consists of a single layer of tall columnar epithelial cells that rest on a thick basal membrane in contact with the pseudocoelomic cavity. Experiments were conducted on glutaraldehyde-fixed tissue to ascertain the nature of the electronegative charges associated with both the apical microvillar surface and basal membrane.A strong electronegative charge was demonstrated on the microvillar surface and basal membrane with ruthenium red and cationic ferritin staining. The ionic nature of ferritin binding was demonstrated with poly-L-lysine, a polycation that interacts with anionic groups on the membrane and thus blocks the subsequent binding of ferritin. Tissue thus treated was devoid of reaction product. Methylation with diazomethane completely abolished staining. Since the stronger acidic groups of sulfates or phosphates would not be protonated under the conditions employed in this study, and therefore susceptible to methylation, staining by ferritin is thought to be due to its interaction with carboxyl groups. Prior enzymatic treatment of tissue with neuraminidase or phospholipase C had no effect on subsequent ferritin binding. Tissue exposed to colloidal iron at various pH values showed maximal reactivity at a pH of 2.5 or above. Above pH 2.5, the dissociation of protons from free carboxyl groups of protein-bound amino-acid residues with pK's of 3.8 and 4.2 would be maximal, and the ionized carboxyl groups are then available to interact with iron micelles. These results suggest the presence of weaker acidic groups, such as the carboxyl groups of acidic amino acids or uronic acid residues. The stronger acidic groups of sialic acid and the esterified sulfate groups, if present, contribute only minimally to overall staining. These results demonstrate that a high electronegative charge density exists, despite the apparent lack of sialic acid. Staining is believed to be due to carboxyl groups of acidic amino acids and/or carboxyl groups or uronic acid residues.Part of this work was conducted at the Department of Zoology, Louisiana State University, Baton Rouge, Louisiana  相似文献   

9.
S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be “shed” from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.  相似文献   

10.
(NH4)2SO4 fractionation followed by Sephadex G-200 chromatography of sugar cane juice gave an acid invertase with MW of 380 000 and 23.5% carbohydrate and a neutral invertase with MW of 66 000 and 22% carbohydrate. For acid invertase, Km is 2.8 mM and Vmax is 2.7 μmol sucrose hydrolysed/hr/mg protein. For neutral invertase, Km and Vmax are 0.32 mM and 2.8 μmol hydrolysed/hr/mg protein, respectively. Inhibition of both invertases by either lauryl sulfate or metasilicate is not competitive.  相似文献   

11.
The distribution and functional significance of charged groups on the outer and inner faces of the S layer from Bacillus stearothermophilus NRS 1536/3c was investigated. Chemical modification of the exposed amino or carboxyl groups was performed on whole cells, isolated S layers self-assembled in vitro, and cell wall fragments (S layer attached to the peptidoglycan-containing sacculus). Without chemical modification, S layer self-assembly products could be labeled with polycationic ferritin, while S layers on whole cells could not. Following treatment with glutaraldehyde, whole cells were uniformly labeled with polycationic ferritin. Whole cells treated with glutaraldehyde and glycine methyl ester in the presence of carbodiimide did not bind polycationic ferritin significantly above background. Treatment of cell wall fragments with amino-specific, homobifunctional cross-linkers or with carbodiimide alone rendered the S layer protein nonextractable with sodium dodecyl sulfate. After amidation of the accessible carboxyl groups, the modified, guanidine hydrochloride-extractable S layer protomers did not self-assemble into regularly structured lattices. N-Amidination with ethylacetimidate did not interfere with the self-assembly of the isolated protomers. N-Acetylation resulted in a considerable destabilization of the S layer lattice, as seen by the release of a large amount of modified protomers during the reaction. N-Succinylation led to a complete disintegration of the protein lattice. These results indicated that only the inner face of the S layer carried a net negative charge. On both faces, free amino and carboxyl groups of adjacent protomers were arranged in proximity so as to contribute by electrostatic interactions to the cohesion of the protomers in the two-dimensional array. The native charge of the protomers was required for both the in vitro self-assembly of the isolated subunits and the maintenance of the structural integrity of the S layer lattice. Among other functions, the biological significance of the S layers may be in masking the electronegative charge of the cell wall proper.  相似文献   

12.
It is known that there are 100 Å-wide circular structures associated with the erythrocyte membrane in immune lysis. To determine whether these structures were functional holes extending through the membrane, freeze-etch electron microscopy was carried out. Sheep erythrocytes incubated with either rabbit complement or rabbit antibody (anti-sheep erythrocyte antibody) did not hemolyze and did not reveal any abnormalities in freeze-etch or negative-stain electron microscopy. Erythrocytes incubated with both complement and antibody revealed rings on the extracellular surface (etch face) of the cell membrane. Allowing for the 30 Å-thick Pt/C replica, the dimensions of the surface rings were similar to those seen by negative staining. The ring's central depression was level with the plane of the membrane; some rings were closed circles, others were crescent shaped. The cleavage face of the extracellular leaflet revealed globule aggregates, each aggregate appearing to be composed of about four fused globules. The cleavage face of the cytoplasmic leaflet was normal. When immune lysis was carried out in the presence of ferritin, ferritin was subsequently detected in all lysed erythrocytes. If ferritin was added after immune lysis was complete, only 15% of the cells were permeated by ferritin, indicating that transient openings exist in the cell membrane during immune lysis. No abnormal structures were detected when C6-deficient rabbit serum was used as a source of complement. It is concluded that antibody and complement produce surface rings, prelytic leakage of K+, colloid osmotic swelling, membrane disruption, and membrane resealing; the surface rings persist after these events.  相似文献   

13.
The crystalline cell surface layer (S-layer) of Bacillus stearothermophilus PV72 shows hexagonal lattice symmetry and is composed of a single protein species with a molecular weight of 130000. For investigating the regulation of S-layer protein synthesis, Bacillus stearothermophilus PV72 was grown in continuous culture on synthetic PVIII- medium with glucose as carbon source at constant dilution rate of 0.3 h−1 at 57 ° C under different conditions and limitations. A complete outer S-layer and an S-layer protein pool sufficient for formation of about 70% inner S-layer was produced under carbon-limited growth. The inner S-layer results from an S-layer protein pool stored in the peptidoglycan-containing layer of whole cells which can emerge and assemble on the inner face of the rigid cell wall layer during the cell wall preparation procedure. Under oxygen-limited growth, only a complete outer S-layer but no S-layer protein pool was synthesized. Reduction of the methionine concentration of PVIII-medium from 100 to 10 mg l−1 led to a clear decrease in S-layer protein production and to an incomplete outer S-layer. During growth in the presence of excess glucose, S-layer protein synthesis was replaced by that of an exopolysaccharide matrix. After changing to carbon limitation again, the original level of S-layer protein synthesis was achieved after only four volume exchanges. Feeding of casein hydrolysate or aromatic or basic amino acids to the continuous culture induced an irreversible loss of S-layer protein synthesis after from five to ten volume exchanges. In contrast, addition of Gly, Ala, Val, Leu, Ile, Glu, Gln, Asp, Asn, Ser and Thr in different mixtures could significantly stimulate S-layer protein production.  相似文献   

14.
The biosorption of Cu2+ by free and poly acrylamide gel (PAG) immobilized Spirulina platensis (SpiSORB) was characterized under batch and continuous packed bed columnar reaction systems. The biosorption of Cu2+ was shown to be highest at pH of 6.0 for both types of biomass. The PAG immobilization process did not interfere with the Cu2+ binding sites present on biomass leading to cent percent (ca. 250 mg g−1 of dry biomass) retention of biosorption as compared to free cells. Transmission electron microscopy on Cu2+ localization revealed that majority of metal is being sequestered by the cell wall only. The infrared spectrum of metal treated S. platensis biomass indicated the possible involvement of amide, amino, and carboxyl groups in metal binding. Up-flow packed bed columnar reactor containing 2.0 g of PAG immobilized S. platensis shown a maximum of 143-fold volume reduction factor at the residence time of 4.6 min for Cu2+ alone and found to decrease dramatically when Zn2+ is present in a bimetallic solution.  相似文献   

15.
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits present as the outermost component of the cell wall in several Lactobacillus species. The underlying mechanism for how S-layer proteins inhibit pathogen infections remains unclear. To gain insights into the mechanism of the antimicrobial activity of Lactobacillus S-layer proteins, we examined how Lactobacillus S-layer proteins impact Salmonella Typhimurium-induced apoptosis in vitro in Caco-2 human colon epithelial cells. When Caco-2 cells infected with Salmonella Typhimurium SL1344, we found that apoptosis was mediated by activation of caspase-3, but not caspase-1. When Salmonella Typhimurium SL1344 and S-layer proteins were coincubated simultaneously, Caco-2 cell apoptosis was markedly decreased and the cell damage was modified, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer proteins inhibited the caspase-3 activity and activated the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway. Taken together, these findings suggest that Lactobacillus S-layer proteins protected against Salmonella-induced apoptosis through reduced caspase-3 activation. In addition, Salmonella-induced apoptotic cell damage was modified by S-layer proteins through the ERK1/2 signaling pathway. This mechanism may represent a novel approach for antagonizing Salmonella infection.  相似文献   

16.
The functional S-layer protein gene slfB of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 was cloned as a polymerase chain reaction product into the expression vector pET Lic/Ek 30 and heterologously expressed in Escherichia coli Bl21(DE3). The addition of His tags to the N and C termini enabled the purification of the recombinant protein by Ni-chelating chromatography. The Ni binding capacity of the His-tagged recombinant S-layer protein was compared with that of the wild-type S layer. The inductively coupled plasma mass spectrometry analyses demonstrate a significantly enhanced Ni binding capability of the recombinant protein. In addition, the self-assembling properties of the purified modified S-layer proteins were studied by light microscopy and scanning electron microscopy. Whereas the wild-type S-layer proteins re-assembled into regular cylindric structures, the recombinant S-layer proteins reassembled into regular sheets that formed globular agglomerating structures. The nanoporous structure of the protein meshwork, together with its enhanced Ni binding capacity, makes the recombinant S-layer attractive as a novel self-assembling biological template for the fabrication of metal nanoclusters and construction of nanomaterials that are of technical interest.  相似文献   

17.
The invertase present in roots of chicory (Cichoriun intybus) has a pH optimum of 7.5 and a MW of ca 260 000. It requires relatively high ionic strength to remove it from DEAE cellulose. Treatment of chicory root tissue with 2,4-dichlorophenoxyacetic acid gives rise to a highly active invertase with pH optimum of 5.6 and MW of ca 61 000. It is more easily removed from DEAE cellulose.  相似文献   

18.
The location of carbohydrate moieties on the outer cuticle of Xiphinema index was examined by electron microcopy using several different reagents: a) The periodic acid-thiosemicarbazide-silver proteinate reaction was used as a general stain for carbohydrates. In sectioned material it stained the canal system and deeper layers of the cuticle as well as the outer surface, b) Cationized ferritin at pH 2.5, which identifies carboxyl and sulfate groups, was used to identify sialic acid residues and also labelled parts of the canal system, c) Ferritin-goat anti rabbit IgG coupled to a DNP ligand was used to label either sialyl or galactosyl/N-acetyl-D-galactosaminyl residues, d) Ferritin hydrazide, a new reagent, was used for the ultrastructural localization of glyco-conjugates. Reagents c) (with appropriate antisera) and d) were applied only to the outer surfaces of the cuticle; they showed that sialic acid residues were concentrated mainly on the outer body wall of the head, the lips, oral opening, amphid apertures, and outer surface of protruded odontostyles. Ferritin distribution was not altered by pretreatment with neurantinidase. Galactose oxidase treatments revealed galactose/N-acetyl-D-galactosamine residues along the entire body wall. These results confirmed earlier findings obtained by fluorescence microscopy.  相似文献   

19.
Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.  相似文献   

20.
Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His6-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His6-tags. The accessibility of the His6-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His6-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris–NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His6-tags in the presence of nickel ions. Thus the His6-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris–NTA derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号